Producción Científica Profesorado

NiMo catalysts supported on Mn-Al2O3 for dibenzothiophene hydrodesulfurization application



Guevara Lara, Alfredo

2017

NiMo catalysts supported on Mn-Al2O3 for dibenzothiophene hydrodesulfurization application, López-Benítez, A., Berhault, G., Guevara-Lara, A., Applied Catalysis B: Environmental, 213 (2017) 28-41


Abstract


Modification of the traditional Al2O3 support through addition of manganese to Al2O3 mixed Mn-Al oxides was herein envisaged to obtain highly active NiMo catalysts for hydrodesulfurization application. The effect of adding manganese was determined considering different Mn-Al2O3 supports synthetized using a sol?gel approach. The manganese-containing supports were furthermore impregnated with Ni(NO3)2 + (NH4)6Mo7O24 aqueous solutions at pH = 9 and characterized at their oxide state using UV?vis diffuse reflectance and Raman spectroscopies after drying and calcination steps. NiMo/Mn-Al2O3 catalysts were also characterized at the sulfide state mainly by X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Finally, the sulfide catalysts were evaluated in the hydrodesulfurization of dibenzothiophene. Results show that the oxidation state of manganese species directly influences the nature of the Mo oxide species and their interaction with the Al2O3 support. At low Mn content (up to 0.5 mol% Mn as MnO), Mn2+ species leads to weaker interaction with the support and a higher intrinsic activity of the NiMoS species. However, these promoted sites are also formed in a lower amount than without adding Mn to the support. At too high manganese content (?2 mol% Mn as MnO), Mn3+ species are formed and react with Ni to form a spinel phase decreasing the proportion of promoted phase to be formed after sulfidation. The highest activity is therefore observed at an intermediate Mn content of 1 mol% for which a higher intrinsic activity resulting from weaker support interaction and higher sulfidation rate combine together to achieve highly active NiMo HDS catalysts.



Producto de Investigación




Artículos relacionados

Influence of the Cation Nature of the Sulphate Salt on the Electrochemical Synthesis of Sulfate-Dope...

Cobalt electrodeposition onto highly oriented pyrolytic graphite (HOPG) electrode from ammonium sulf...

Morphological and magnetic properties of cobalt nanoclusters electrodeposited onto HOPG

The role of temperature in copper electrocrystallization in ammoniachloride solutions

Characterization of Main Anthocyanins Extracted from Pericarp Blue Corn by MALDI-ToF MS

Estudio de las Interacciones Ácido Húmico-Metales Pesados y Determinación de sus Constantes de Estab...

Kinetics of Polypyrrole Films Doped with Sulphate Ions Electrodeposited Over Graphite - Epoxy Resin ...

A theoretical quantum study on the distribution of electrophilic and nucleophilic active sites on th...

Bioacumulación y daños genotóxicos en Pez Cebra (Danio rerio) por arsénico en aguas de Zimapán, Hida...

Synthesis and crystal structures of cis-palladium(II) and cis-platinum(II) complexes containing di...