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Abstract— Iterated local search (ILS) is a metaheuristic
used successfully to solve the flow shop scheduling problem.
In particular, the multi-restart ILS (MRSILS) is an easily
implementable algorithm which obtains good results. In
this paper, we modify the MRSILS algorithm in two ways.
First, small changes in the initial solution are generated by
permutation matrices in order to improve it before using the
MRSILS. Second, a minor variation is made in the strategy
of the MRSILS. Sorted completion times are taken to select
the job to be inserted in new positions to obtain a better
scheduling. The original MRSILS and both modifications
are evaluated with well-known benchmark instances. The
experiments show that the new modifications produce slightly
better results than the original one, especially for a large
number of jobs.

Keywords: Flow shop scheduling problem, iterated local search,
permutations, work time costs

1. Introduction
The flow shop scheduling is a classic combinatorial prob-

lem established by Johnson in [1]. In this problem, n jobs
must be processed on m machines, where each machine is
required to process the set of all jobs in the same order. The
most common objective in this problem is to minimize the
completion time of the last job, or makespan.

Many evolutionary methods have been proposed for make-
span minimization. Some of them are based on the modifi-
cation of continuous evolutionary algorithms. For instance,
recent modifications of particle swarm optimization methods
have been proposed in [2], [3], [4], and a bee colony
algorithm has been presented in [5].

These are only a few examples of the great number of
papers devoted to adapt evolutionary and metaheuristic algo-
rithms to minimize the makespan in the flow shop scheduling
problem. Very often these papers present complex algorithms
in order to construct factible and better solutions. The basic
operations in these algorithms, however, are a mixture and/or
extensions of job insertions and swaps.

Past research shows that simpler algorithms are able to
obtain effective results without need of complex strategies.

In particular, the iterated local search method (ILS) has been
applied in the minimization of the total flow time for the flow
shop scheduling problem [6]. This method has been recently
improved using multi-restart points (MRSILS), showing
better results than many more intricate and sophisticated
metaheuristics [7]. This method is only based in insertions
of jobs; without considering swaps.

This paper takes the MRSILS algorithm proposed by
Dong et al. in [7] in order to minimize the makespan of
the flow shop scheduling problem. Then, two modifications
are presented. The first one consists of applying a matrix
which defines job permutations to improve a given initial
solution. This improved solution is passed to the MRSILS
algorithm to obtain a final result. This modified algorithm is
called MRSILS_PM.

The second modification is a slightly change in the
strategy of the MRSILS, where the job to be inserted is
selected sorting the differences of completion job times. For
this reason, this modification is called MRSILS_SD.

The three algorithms have been evaluated taking the
benchmark instances proposed in [8] and [9], which can
be downloaded as the data file flowshop1 from the web
site OR Library.1 The results show that MRSILS_PM and
MRSILS_SD have obtained slightly better results than the
original MRSILS in minimizing the execution time and/or
the makespan.

2. Flow shop scheduling problem
The flow shop scheduling problem consists of the assign-

ment of a set of n jobs W = {J1, . . . , Jn}, each job Ji
is composed of a set of operations Ji = {Oi1, . . . , Oim}
processed by a set of machines M = {M1 . . .Mm}. Every
operation Oij has associated a value Tij that represents
the processing time of operation Oij ; for 1 ≤ i ≤ n and
1 ≤ j ≤ m. Each machine can process only one job at a
time. It is assumed that the machine sequence is identical for
all jobs, and the job sequence is the same for all machines.

1http://people.brunel.ac.uk/˜mastjjb/jeb/orlib/flowshop info.html. Con-
sulted in January 27th, 2014.
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Therefore, a job schedule is represented as a permutation
π = {π1, . . . , πn} of W . The completion time of the
operation Oij is indicated by Cij . The objective of the
flow shop scheduling problem is the minimization of the
makespan Cmax, or the completion of the last operation in
π.

The model of the flow shop scheduling problem can be
defined in the following way:

Cπ11 = Tπ11

Cπ1j = Cπ1j−1 + Tπ1j

Cπi1 = Cπi−11 + Tπi1

Cπij = max{Cπi−1j , Cπij−1}+ Tπij

(1)

where i ∈ {2, . . . , n} and j ∈ {2, . . . ,m}. Thus Cmax =
Cnm.

3. MRSILS algortihm
The framework of the MRSILS algorithm is very simple

[7]. First, a well-known heuristic is applied in order to
generate a good initial solution. This paper applies the NEH
method described in [10], which constructs a solution π in
negligible time.

The MRSILS algorithm improves the solution by inserting
a selected job into different positions of π to generate a new
solution π′. If a better solution is obtained, then π is replaced
by π′.

Let π∗ be the best solution found by the algorithm. In
order to avoid that π∗ be trapped in a local optimum, the
search space is extended by generating restart solutions from
a set Π (or pool) of solutions. This pool keeps the best q
solutions calculated so far. If the MRSILS algorithm does
not improve the solution after n iterations, the local optimum
π is added to Π if it is not already there. If Π has more than
q solutions, the worst solution of the pool is deleted.

When Π is not full, the restart solution is generated from
π∗; otherwise, a solution π′ is randomly chosen from Π.
The selected solution is perturbed by inserting one randomly
chosen job into another randomly chosen position. In this
way, a new restart solution π is defined.

Figure 1 shows the pseudocode of the MRSILS algorithm
taking the parameters specified in [7].

4. Permutation matrix
The MRSILS algorithm is only based on insertions. It can

be considered as an algorithm which performs small changes
in every solution in order to achieve an improvement. So the
MRSILS algorithm is suitable to refine solutions.

The application of swaps and permutations of jobs, how-
ever, are useful to improve an initial solution at the beginning
of the optimization process. These operations may produce
the exploration of a bigger space search in order to obtain a
better schedule which can be refined after with the MRSILS.

These swaps and permutations can be specified in a matrix
M , where it has as many rows as n (number of jobs) and r

Fig. 1: Pseudocode of MRSILS.

columns. Here, r is the number of different solutions to be
obtained for the swaps and permutations defined by M .

For a job schedule π = {π1 . . . πn}, every column j in M
defines a new permutation π′. The entry mij indicates the
new place of the job πi. If mij = i, then π′i = πi; that is, the
job i in π conserves the same position in π′. Otherwise, for
mij = z 6= i, π′i = πz . The job at position z in π changes
into position i in π′. Therefore, every column j in M is a
permutation of Zn = {1, . . . , n}. Since M consists only of
permutations of Zn, it is easily defined and can be applied
quickly to π to produce a new schedule.

In order to define the matrix M , we are taking into account
four parameters:

r → number of columns
α → proportion of columns which define

large changes
γ → proportion of permuted jobs for columns

defining large changes
δ → proportion of permuted jobs for columns

defining small changes

(2)

In Eq. 2, r can be defined as a multiple of q, the size of
the pool Π in the MRSILS algorithm. In our experiments,
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the best performance has been obtained with r = 10 ∗ q,
α = 0.55, γ = 0.6 and δ = 0.1.

Fig. 2: Pseudocode of PM.

Fig. 3: Pseudocode of MRSILS_PM.

The algorithm that defines and applies the permutation
matrix (PM) is presented in Fig. 2. This algorithm takes first
an improved solution from the NEH heuristic, where ZTn is
the transpose of Zn and round(a) is the closest integer of
a real number a. Figure 3 describes the integration of the
MRSILS and PM algorithms (MRSILS_PM). This algorithm
takes first an improved solution from PM using small and
large random permutations. Finally, the best solution is taken
from PM and it is refined (or exploited) by the MRSILS
algorithm. Notice that half of the iterations are done by PM
and the final half are realized by MRSILS.

5. Strategy using sorted completion
times

The second modification proposed in this paper is a slight
change in the selection of the job to be inserted in the line 6
of the MRSILS algorithm (Fig. 1). In the original algorithm,
the job is selected finding the position k in π containing
the job j in the current best solution π∗. In the proposed
modification, first the completion times of every job in π∗ are
taken. These completion times define a vector D as follows:

D = {Cim : i = 1, . . . , n} (3)

Equation 3 can be obtained when the makespan is cal-
culated with Eq. 1, therefore, this calculus does not imply
an extra numerical work. Then, the differences E between
completion times is calculated as follows:

E = {Dj+1 −Dj : j = 1, . . . , n− 1} (4)

Notice that |E| = n−1 and all the values of E are positive
because Dj < Dj+1 for every j in Eq. 4.

Once calculated Eq. 4, E is sorted in a descending way,
where I is the index vector associated with E. That is, the
first element of I is the index of the highest element in E;
the second element of I is the index of the second highest
element in E, and so on.

Take the first index µ in I . This index represents the
pair of jobs πµ and πµ+1 with the greatest completion time
difference. A big difference would indicate that these jobs
are not well-ordered in π∗, and a best solution could be
obtained if one of the jobs is inserted in a different position.

Consequently, each πµ and πµ+1 are inserted in the
other positions, similar to the process done in the MRSILS
algorithm. If some insertion improves the current solution, D
and E are also updated. This process is iteratively repeated
taking the i-th element of I in every step. This modification
is called MRSILS_SD. In short, MRSILS_SD takes as
criterion the descending sort of completion time differences
to select the jobs to be inserted, in order to improve the
current schedule. Figure 4 presents the pseudocode of the
MRSILS_SD algorithm.

6. Experimental results
The original MRSILS algorithm and the two modifica-

tions (MRSILS_PM and MRSILS_SD) have been evaluated
taking 29 flow shop scheduling instances commonly used in
the literature (car1,. . ., car8; and rec01, rec03,. . ., rec43) [8]
[9].

The parameters selected to compare the three algorithms
are presented in Table 1. For each case, 50 independent
runs have been calculated for every flow shop scheduling
instance. Table 2 presents the data of each problem: name
(N), size (n,m) indicating n jobs and m machines, and their
optimum value (O). In order to compare the results, Table 2
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Fig. 4: Pseudocode of MRSILS_SD.

Table 1: Parameters to compare the three algorithms.
Parameter Value
Pool size (q) 20
Number of iterations (lim) 1000
Number of iterations for the 500
PM part (lima) in MRSILS_PM
Number of iterations for the 500
MRSILS part (limb) in MRSILS_PM
Number of permutations (r) in PM 200
Proportion of columns (α) in PM 0.55
defining large changes
Proportion of permuted jobs (γ) in PM 0.6
for columns defining large changes
Proportion of permuted jobs (δ) in PM 0.1
for columns defining small changes

also shows the results obtained by each algorithm: minimum
(M), mean value (MV) and mean execution time (MET, in
seconds). The best results obtained by any of the algorithms
are presented in bold. Notice that more than one algorithm
may reach the best value in every instance.

Table 4 shows a summary of the results obtained by the
algorithms. This table presents the number of times in which
each algorithm has obtained the best results.

From Tables 2 and 4, we can see that the three algorithms
optimize easily the problems car1 to car8. In these ones, the
original MRSILS has the minimum MET. For the problems
rec01 to rec41, the three algorithms had similar results to find
the optima, and MRSILS and MRSILS_SD have obtained
almost the same results in finding the best MV. We can
see, however, that MRSILS_SD had a better performance
than the other algorithms to find the best M. In particular,
MRSILS_SD has outperformed the other algorithms to find
a minimum makespan for the greater instances of the rec
problems (from rec19 to rec 41). Nevertheless, MRSILS_SD

is a more time-consuming algorithm than the other ones.
This is notorious as well in Table 2 for the greater instances
of the rec problems. The MET parameter of MRSILS_SD
is almost 75% greater than the same parameter of MRSILS
in the last three problems.

Finally, it is clear that MRSILS_PM is the fastest al-
gorithm for the rec problems. Actually, MRSILS_PM is
executed in almost 50% less time that the original MRSILS
for the last three problems in Table 2.

For each of the 12 hardest problems (rec19 to rec41),
another set of 50 independent runs have been executed for
every algorithm, but taking now lim = 4000. This implies
that lima = limb = 2000 in the MRSILS_PM algorithm.
Table 3 displays the results of this experiment and Table
5 presents the result summary. In the second experiment,
we can see again that MRSILS_PM is faster than the other
two algorithms. All the algorithms improved their results,
especially the algorithm MRSILS_PM which improves the
performance of MRSILS in the Optimum and Best M pa-
rameters. We can notice that MRSILS_SD outperforms the
other algorithms in the second experiment as well, mainly
in the last three problems.

7. Concluding remarks
The MRSILS is a very simple algorithm capable to

obtain very good results in the optimization of the flow
shop scheduling problem. On the contrary to more complex
methods of optimization, the MRSILS algorithm is only
based in insertions, starting from a single initial solution.
In this manuscript, two modifications of the MRSILS have
been proposed in order to improve its performance.

The first one (MRSILS_PM) consists of executing ran-
dom permutations in the initial solution. One part of these
permutations take into account a minimal part of the jobs,
and the other part permutes a greater number of jobs. The
experimental results show that this process is faster in a
rough 50% than the original MRSILS algorithm for the big-
ger problems presented in this paper. Besides, MRSILS_PM
obtains similar results to MRSILS for the Best M parameter.

The second modification (MRSILS_SD) is a small change
in the strategy of the original algorithm. It selects the jobs
to be inserted according to the difference of completion
times between contiguous works. We suppose that bigger
differences may indicate bad placed jobs that need to be
reallocated in order to improve the solution. The experi-
mental results show that MRSILS_SD outperforms slightly
the other algorithms. This performance is not for free, the
sorting operation involved in the step 9 of the algorithm (Fig.
4) increases the execution time in a rough 75% compared to
the original MRSILS, for the bigger cases.

Future work could consider the implementation of an
algorithm where the first part applies the matrix permutation
and the second one implements the strategy of differences
between completion times.
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Table 2: Results of the three algorithms for l = 1000.
N S O MRSILS MRSILS_PM MRSILS_SD

(n,m) M MV MET M MV MET M MV MET
car1 (11, 5) 7038 7038 7038 2.29 7038 7038 3.52 7038 7038 3.1
car2 (13, 4) 7166 7166 7166 3.07 7166 7166 3.89 7166 7166 4.29
car3 (12, 5) 7312 7312 7312 2.65 7312 7315.24 3.71 7312 7312 3.71
car4 (14, 4) 8003 8003 8003 3.52 8003 8003 4.14 8003 8003 4.97
car5 (10, 6) 7720 7720 7720 1.91 7720 7720 3.32 7720 7720 2.55
car6 (8, 9) 8505 8505 8505 1.31 8505 8505 3.06 8505 8505 1.66
car7 (7, 7) 6590 6590 6590 1.01 6590 6590 2.81 6590 6590 1.23
car8 (8, 8) 8366 8366 8366 1.29 8366 8366 3.01 8366 8366 1.64

rec01 (20, 5) 1247 1247 1248.32 7.5 1247 1248.64 6.4 1247 1248.68 11.3
rec03 (20, 5) 1109 1109 1109 7.52 1109 1109 6.4 1109 1109 11.3
rec05 (20, 5) 1242 1245 1245 7.50 1242 1244.88 6.45 1242 1244.94 11.43
rec07 (20, 10) 1566 1566 1566.04 8.91 1566 1567.44 7.4 1566 1566.36 13.65
rec09 (20, 10) 1537 1537 1537 8.79 1537 1537 7.33 1537 1537 13.66
rec11 (20, 10) 1431 1431 1431 8.89 1431 1431 7.39 1431 1431 13.58
rec13 (20, 15) 1930 1930 1933.48 10.28 1930 1934.7 8.43 1930 1932.82 16.04
rec15 (20, 15) 1950 1950 1950.24 10.24 1950 1952.64 8.36 1950 1950.36 15.98
rec17 (20, 15) 1902 1902 1902 10.07 1902 1903.18 8.35 1902 1902.28 16.07
rec19 (30, 10) 2093 2099 2104.44 22.65 2099 2102.92 14.75 2099 2102.84 37.03
rec21 (30, 10) 2017 2020 2044.04 27.81 2021 2045.08 17.29 2020 2040.78 38.35
rec23 (30, 10) 2011 2014 2019.74 28.1 2014 2020.18 17.43 2013 2019.24 39.03
rec25 (30, 15) 2513 2513 2523.3 32.49 2513 2532.24 20.06 2513 2529.26 47.44
rec27 (30, 15) 2373 2378 2389.34 32.62 2378 2392.34 20.14 2377 2389.08 47.84
rec29 (30, 15) 2287 2287 2299.96 32.81 2290 2304.56 20.21 2287 2301.02 47.35
rec31 (50, 10) 3045 3053 3056.94 95.38 3053 3061 51.73 3053 3056.86 143.27
rec33 (50, 10) 3114 3114 3119.06 93.16 3114 3122.04 50.46 3114 3126.46 138.31
rec35 (50, 10) 3277 3277 3277 94.47 3277 3277 51.16 3277 3277 140.64
rec37 (75, 20) 4951 5007 5039.18 395.04 5022 5051.24 205.15 5000 5042.78 681.12
rec39 (75, 20) 5087 5120 5134.84 402.62 5124 5142.86 208.38 5114 5135.9 702.96
rec41 (75, 20) 4960 5018 5049.84 400.62 5026 5058.7 206.99 5017 5048.12 696.53

Table 3: Results of the three algorithms for l = 4000.
N S O MRSILS MRSILS_PM MRSILS_SD

(n,m) M MV MET M MV MET M MV MET
rec19 (30, 10) 2093 2096 2100.76 110 2093 2100.08 68.15 2099 2100.2 153.02
rec21 (30, 10) 2017 2020 2038.8 111 2020 2038.62 68.44 2020 2036.18 153.3
rec23 (30, 10) 2011 2013 2017.08 111.2 2011 2017.86 68.85 2013 2018.12 154.95
rec25 (30, 15) 2513 2513 2518.46 127.61 2513 2520.48 78.93 2513 2520.72 187.62
rec27 (30, 15) 2373 2376 2382.04 128.96 2376 2384.68 79.56 2373 2381.7 189.75
rec29 (30, 15) 2287 2287 2292.42 129.14 2287 2293.88 79.72 2287 2292.88 190.1
rec31 (50, 10) 3045 3053 3053.5 377.22 3048 3054.22 204.99 3048 3053.22 560.71
rec33 (50, 10) 3114 3114 3114.68 371.17 3114 3115.96 201.07 3114 3114.16 545.77
rec35 (50, 10) 3277 3277 3277 376.84 3277 3277 204.05 3277 3277 558.32
rec37 (75, 20) 4951 4979 5014.06 1558.13 4993 5022.88 809.45 4964 5016.14 2642.87
rec39 (75, 20) 5087 5120 5128.74 1595.96 5120 5130.14 827.02 5114 5126.92 2712.61
rec41 (75, 20) 4960 4993 5026.7 1575.54 5000 5033.02 822.53 4991 5023.64 2651.83

Table 4: Best results obtained by the algorithms for l =
1000.

Algorithm Optimum Best Best Best
M MV MET

MRSILS 20 23 21 8
MRSILS_PM 20 22 12 21
MRSILS_SD 21 29 19 0

Other possibility is to investigate other criteria in order
to select the jobs to be inserted in the different places to
improve the current schedule. For instances, the idle times
between contiguous jobs or machines.
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