Eleventh Mexican International Conference on Arti

ficial Intelligence: Advances in Artifical Intelligence and Applications, Special
Session - Revised Papers

Implementing a Knowledge Bases Debugger

Juan C. Acosta Guadarrama, J. Raymundo Marcial Romero,

Marcelo Romero
Computer Science Department

Autonomous University of Mexico State; FI-UAEM

Mexica
Jguadarrama@gmail.com

Abstract—Knowledge representation is an important topic in
common-sense reasoning and Artificial Intelligence, and one of
the earliest techniques to represent it is by means of knowledge
hases encoded into logic clauses. Encoding knowledge, however,
is prone to typos and other Kinds of consistency mistakes, which
may yield incorrect results or even internal contradictions with
conflicting information from other parts of the same code.
In order to overcome such situations. we propose a logic-
programming system to debug knowledge bases. The system
has a strong theoretical framework on knowledge representa-
tion and reasoning, and & suggested on-line prototype where
one can test logic programs. Such logic programs may have,
of course, conflicting information and the system shall prompt
the user where the possible source of conflict Is. Besides, the
system can be employed to identify conflicts of the knowledge
base ltsell and wpcoming new information, it can alko be
used to locate the source of conflict from a given inherently
inconsistent static knowledge base. This paper describes an
implementation of a declarative version of the system that has
been characterised to debug knowledge bases in a semantical
formalism. Some of the key components of such implementation
are existing solvers, so this paper focuses on how (o use them
and why they work, towards an implemented a fully-fledged
system.

Keywords-Answer Set Programming; Knowledge Repre-
sentation; program transformation; implementation; non-
monotonic reasoning; belief revision

ACKNOWLEDGMENT

This project has been supported by a grant from the
Mexican Public-Education Ministry, SEP.

[. INTRODUCTION

As one of the major and traditional topics of artificial
intelligence over the last years, knowledge representation
and commonsense reasoning have proved to be strong the-
oretical frameworks for logic programming (LP) to man-
age knowledge bases. As a result, LP has become more
widely applied in the administration knowledge bases of
intelligent (rational) agents, especially when talking about
an agent's incomplete knowledge in a changing environment.
Such knowledge typically is encoded into a traditional LP
language-like Prolog or ASP and the resulting program
is said 1o be the knowledge base of, say, from an intelligent
agent to-a logical circuit,

A78-0-7695-4904-0/12 §26.00 © 2012 [EEE
DOL 10.1109/MICAL2012.20

e .

Jorge Hernéndez Camacho
Computer Science Department
Auwtonomous University of Hidalgo State, ESH
Mexico
Jhcjorge @ gmail.com

Altheugh encoding knowledge into @ logic program is a
very important topic of research over the last few decades,
little attention has been paid to the problem of debugging the
resulting knowledge bases and how to implement a solution.
The problem arises when having a typo or another kind of
mistake while encoding. and it can be a gross problem if
the knowledge base is particularly large.

Several authors [1}-{7] propose methods to manage
knowledge bascs and use Answer Ser Programming [8}—or
simply ASP—as their foundation for being one of the most
solid and studied semantics for logic programs over the last
decade. The approaches and the semantics itself, however,
cannot provide an explicit methad to self-debug its programs
when conflicting rules exist or one needs 1o incorporate
new information that conflicts with previous knowledge. For
cxample, let us, consider the following simple knowledge
base.

Example 1: Suppose we have the following simple logic
program (in ASP) representing the knowledge of an agent.
which acts under specific circumstances.

P={sleep + nught,~tv(on)
night +« T
wotch(tv) <« fvfon)
te{on) +« T}
The  unigue  model of such  program s

{ night, watch(tv), tv{on)}. Now suppose that for some
reason, we need to incorporate new information encoded
into the nile ~watch(tv) « T. One can easily realise that
the sole inclusion of the new information into the initial
knowledge base,

P' = {sleep + night,~tu{on)
night < T
watch(ty) + tv{on)
twlon) + T

~watch(tv) + T}

has no models either. What is more, the lack of an appropri-
ate conclusion has collapsed the entire knowledge base and

m‘coiEEE ter
o w?ocnety




-~

no further conclusions can be drawn from it. So, (he agent
knows nothing at all now,

Of course, the above mentioned references can perform a
corresponding update and automatically incorporate the new
information into a new consistent knowledge base that does
draw appropriate conclusions. Naturally the purpose of such
references is a little different from the one we pose in this
work. As a result, once the update is performed, one can get
the resulting models, if any, and {in one of the references)
the corresponding new knowledge bases. The problem with
the approahes arises, however, when one tries 1o update an
initial inconsistent knowledge base.

There are several earlier related works that have addressed
the problem of debugging knowledge bases, For instance,
[5] proposed a framework to restore consistency of a given
list of planning specifications encoded into an ASP static'
program. The proposal introduces the use of a method
called Consistency-Restoring Rules to diagnose the source of
conflict in a very particular context. Another proposal is in
order when changing “factory” specifications of the knowl-
cdge base of an intelligent agent coping with a dynamic
changing environment, by means of program transformations
[7]. Although the latter is in the same context we suggest,
they both have not been extended 10 the general case of
debugging knowledge bases, besides having to move to the
particular syntax they propose.

As a result, the present work introduces a general alter-
native to those proposals, and it addresses both kinds of
problems into & single framework, and without need of a
different language. We propose a prototype for debugging
of knowledge bases by a more concise and precise method
of relazation. In addition to that, this work introduces some
formal specifications for the implementation on top of an
ASP solver called DLV [9].

In this paper the reader can find a general description of a
system to implement a debugger, as well as tools, methods.
and directions to get the running solver itself. It begins
with preliminary notation in Section 11, followed by the
main declarative definitions of the semantics and a couple
of properties (Section 11T}, which are the core of the paper
together with some implementation techniques Section IV,
The last section gives final conclusions and future work.

11. PRELIMINARIES
This section is quite general and then we expect the reader
to be familiar with basic notions of logic programming,
Answer Sets Programming and non-monotonic reasoning
from the literature.

A. Logic Programming and Answer Sets

The main base of our proposal is Answer Set Program-
ming —ASP— [8] that is a well-known semantics for its

't is st in the sense that the thorough knowledge base enduses no
change. while the dynamic part is the generation of plans itself.

logical properties and it is one of the foundations many
authors propose for their approaches. Its formal language
and some more notation are introduced very briefly as
follows.

Defmnition T {Language Lasp of logic programs): In the
following we use the language of propositional logic with
propositional symbols: py, py,...; connectives: " (con-
junction); * |7 * V" (disjunction); 4+ (implication); L
(falsum); T (verum): “not™, * =" (default negation); “"~"
(strong negation); auxiliary symbols; “(", *)" (parentheses).
The propositional symbols are also called atoms or atomic
propositions, A literal is an atom or an atom negated by ~
A rule pis an ordered pair Head(p) + Body(p), where
Head(p) is a (possibly empty) finite set of literals, and
Body(p) a (possibly empty) finite set of (defauli-negated)
literals.

The syntax of a logic programs can be defined as follows,

Définition 2 (EDLP); An extended disjunctive logic pro-
gram is a set of rules of form

(,V'fgv..-\/fj = t{+1..--,[,,,.“‘f,y;-{.[,----"[n (!)

where £; is a literal and 0 <[ < m < n.

Naturally, an extended logic program (or ELP hereafter) is
a finite set of rules of form (1) with [ = 1; while an integriry
constraint (also known in the literature as strong constraing)
is a rule of form (1) with [ = 0; while a fact is a rule of the
same form with | = m = n,

Informally, the semantics of such programs consists of
reducing the general rules to rules without default negation
#=", because the Intter are universally well understood. For
page limitation, we just skip the formal definition of such
reduct, which can be easily found in the literature. Finally. |
we weil use the alternative default-negation symbol not - 1o
denote encoded DLV programs rather than generic ones. '

A component of our solver, a weak constraint is # con- |
straint that may be violated in order to establish priorities
amongst models, which was introduced in (2] having the
following syntax.

Definition 3 (Weak Constraint [9]); A weak constraint
{wc) is an expression of the form

by by 0Ot by, O By [ 2 ] (2)

where for 0 < & < m, b;,... b, are literals, while w
(the weight) and I (the level, or layer) are positive integer
constants or variables. For convenience, w and/or { may be
omitted and are set to 1 in such case,

Informally, the interpretation of an ASP program containing
such rules consist in minimising the sum of weights of
violated weak constraints in the highest priority level, and
among them those which minimise the sum of weights of
the violated weak constraints in the next lower level, and so
on. For page-limit reasons, we skip the formal semantics,
which is easily accessible in [9] and others.




Although ASP is our main basis. we need & means to
set up preferences amongst partial models, so that we may
choose the opes according to general principles, One of
such intermediate mechanisms was introduced as Abductive
Logic Programming in [10] and is briefiy presented in the
following section,

B. Minimal Generalised Answer Sets

Minimal Generalised Answer Sets (MGAS) is one of the
semantics Lo interpret abductive programs, which provides
a more general and flexible semantics than standard ASP,
Some of the main definitions are the following,

Definition 4 (Abductive Logic Program [10]); An
abductive logic program is a pair {P, A} where P is an
arbitrary program and A a set of literals, called abducibles.

A way to interpret an abductive program is by generalised
unswer sets, as formally expressed in the following defini-
tion.

Definition 5 (Generalised Answer Sets GAS [10]):
M(A) is a generalised answer set of the abductive program
(P, A) if and only if A C A and AM(A) is an answer set
of PU{H + T|HEegA).

Once we get more than one generalised answer set, a
preferred order can be established over their set inclusion.
Accordingly, we can talk about a Minimal Generalised
Answer Set—MGAS.

Definition 6 (Abductive Inclusion Order [10]): An order
over generalised answer sets is as follows: Let M{A,) and
M(A;) be generalised answer sets of (P, A), we define
J‘I(A)) S.A A\!(Ag) if and Ollly if A] Q Ag.

III. DEBUGGING LOGIC PROGRAMS

Once we have the necessary background we can introduce
our proposal to implement the debugger. To begin with, we
say a program 1s consistenr when it has answer sets, and it is
inconsistent when it is not consistent. Additionally, it is said
10 be debuggable in at least two cases, On the one hand, it is
debuggable when it is originally consistent and we want to
meorporate a new rule that yields an inconsistency. On the
other hand, when it is originally inconsistent and we wish
1o make it consistent,

This should be clearer after the following two examples.

Example 2: Suppose the consistent ASP program

P={(a + T)(b + note),(d « T)}

to which we would like to incorporate a new rule:
(~b + note). As a result, we get the new inconsistent

program
P'={{a « T),(b + note),(d + T),(~b + note)}

which thus is debuggable. Informally one can easily realise
that the new rule and rule (b + note) are the source of
conflict.

As opposed to Example 2, where the new rule might be
considered a formal update to P, one might also want to
debug a single (staric) ELP, as in the following example,

Example 3: Suppose the inconsistent program

{(a « T).(b « notg),(d « T),
(~b & T)(~a + note)},

which has no answer sets. As a result, it is debuggable and
one can easily realise that the following pairs of rules are
in conflict:
(@ + T) with (~a + note) and (b + notc) with
(~b « T).

In order to overcome situations like the two cases above,
we propose a semantics that can deal with them and can
locate and show the sources of conflict so that the inconsis-
tency may be resolved at a meta-semantics.

The following framework shall debug the conflicting rules
from an inconsistency and shall vield one or more trans-
formed programs that are no longer inconsistent. Informally,
the method consists in relaxing the program to be debugged,
by means of a set of new default-negated distinguished
literals that do not appear in the original langusge. Once
relaxed, they are part of the abductive logic program that
has minimal generalised answer sets, which can point out
the conflicting rules.

Formally, an a-relaxed rule is a rule p that is
weakened by a default-negated atom a in its body:
Head(p) « Body(p) U {—-a}. In addition, an a-relaxed
program is a sel of a-relaxed rules. Finally, there is a
particular case of ELP from Definition 1 that contains facts-
only, defined as generalised program:

A generalised program of A is a set of rules of form
{£ « T |£< A}, where A is a given set of literals.

Definition 7 (Debug Program): Given a debug pair of
extended logic programs, Py %5/P,, over a set of atoms .4 and
a set of distinguished abducibles, A*, where AMA* = @, its
debugged program is P'UPs UPg, where P’ is the relaxed
program for P; Pg; is a generalised program for M1.A* for
some minimal generalised answer set M of {P{ UPy, A*)
and "W" is the corresponding debog operator,

A debug program has a corresponding model called debug
model:

Definition 8 (Debug Model): Given a debug pair Py
P; W P> of extended logic programs over a set of atoms
A, the set § € A is a debug model of Py if and only if
S =8N .A for some nminimal generalised answer set 8' of
the corresponding abductive program.

A rule p is said to contradict a consistent ELP, P\ {p].
when {p) LUP has no answer scts.

Proposition 1: Suppose two consistent ELP’s Py, P, and
a given debug pair Py = Py & Py such that Py U P, has
no answer set. The rule p € Py contradicts P, if and only
if ¢/ € P|, where @ is the corresponding a-reluxed rule



of p; P is the relaxed program of P; o € M and ~a €
Body(s"). for some minimal generalised answer set M of
its corresponding abductive program.

Proof sketch: The proof comes from the fact that P, is
consistent and an a-relaxed rule o' € Py is inhibited when
its corresponding abducible « is true, =

In consequence, the a-rules in the debug program give
enough information so as to find the source of conflict
when one of them is not satisfied. So, one can always find
contradictory rules as in the following example.

Example 4: From Example 2, one can suppose the new
rule is in Py, So, rule p = (b « mnotc) contradicts P,
because the update pair is P@P;, which has a corresponding
relaxed program P’ and a corresponding relaxed rule of p.
¢, and the abductive program ( P'UP;, A* ), with a MGAS,
M, where @ € M and nota € Body(p'). As a result. a
points out rule p as a source of conflict and the entire o' is
not satisfied,

By recalling Example 3. one can also debug a single
(static) ELP as follows,

Example 5: Given the inconsistent program P from Ex-
ample 3, the debug pair corresponds to P i # and the
following pairs of rules (@ + T) with (~a + nol x)
and (b ¢ notc) with (~b ¢« T) contradict each other
for similar reasons.

In general, the following property holds when restoring
consistency from an inconsistent program.

Proposition 2: Given an inconsistent ELP, P, and the
debug pair Py = P W0 The rule p € P contradicts P
if and only if p/ € P'. where p’ is the corresponding o-
relaxed rule of p, P’ is the relaxed program of P, a € M
and ~a € Body(p'), for some minimal generalised answer
set M of the corresponding abductive program from Py

This section has been an introduction to some of the
main results of this paper, which consist of a general
characterisation of contradictory information in ASP and
weak constraints. They provide a solid theoretical framework
towards the implementation of a system in DLV to debug
knowledge bases. Further theoretical results, however, both
on the properties of DLV’s weak constraints and on consis-
tency are omitted due to page-limit restrictions.

IV. IMPLEMENTATION

Currently there are at least three major efficient solvers
for ASP with a long background of implementation and
research. Some of those are DLV [9], CLASE and SMODELS
[11], and our system debugs ELP programs of such solvers.

One of the proposals [ 12] to implement updates in MGAS
was a setting of preferred disjunctive logic programs in
ODLP [13] and an implementation for pairs of programs.
Their justification in [12] to use ODLP is the implemented
solver called ESmode1s” that is an extension to SMODELS

hetputiwww.tes hut fifSoftware/smodels/priority!

[11] 1o compute preferred answer sets. Unfortunately, up 10
now there is no stable version and the current one (v. 2.26a)
endures some few bugs®. Moreover, it is believed that DLV
significantly outperforms SMODELS [9], not to mention that
ODLP is such a colossal system that can do much more
complex tasks than just minimal inclusion models.

As an alternative to PSmodels we propose the use of
DLY with a minimal-set-inclusion function (that is not yet
included in DLV) for their characteristics of generalised
answer sets,

A. The Parser and Grammar

Differently from the implementation suggested in [12],
which has parser embedded in its PHP! code, this new |
parser has been compiled in € and it should be portable to
nearly any other platform. The advantage of having a UNIX
command-line binary module is the case 1o be plugged in
to other modules o as to build 2 more complex application.
So, we propose the following tokens instances for this debug |
solver 10 take part at the scanner phase.

NAWE {=~1211:alnum ] _]+
GETS L

NOT *not.”

CONJUNCT o

Note that. although we say pairs of programs, the case of
an inherently inconsistent program that we have analysed in
Section 1V is still in order, as we can stick to Proposition 2
to handle it with the same debug definitions.

As soon as Flex scans the text of a program pair, its
output is passed on to Yacc, which gives a meaning to each |
correct structure of rulés and a program pair that contain |
rules. In particular, the Yacc process specifies the grammar
for update pairs introduced in previous sections. It is also |
responsible for relaxing each rule in the first program of the |
pair, with a new distinguished atom and establishes a ser-
inclusion-preference relation among such atoms. Last, this
process is responsible of an error-checking mechanism that
verifies the correctness of the program according to a simple |
BNF grammar betlow.

<pair> == '{ '<program>')'"{ '<program>’}’
<programz == <program> <rule> |
<rule> =<head> END
| <head> GETS <hody> END
<head:» =<POST> |
<POST> = <LITERAL>
| <POST> DISIUNCT <LITERAL>
<body> == {
<A =<LITERAL>
| NOT
| <PRE> COMAMNCT <UITERAL>
| <PRE> CONANCT NOT <LITERAL>
<LITERALS 2 NAME

| NRVE ‘[ NAME “,' NAME ')

*Try to compite the preferred models of the & simple program like {o.}.
“This is a seript language quite suitable for small processes of dynamic
conlents on web pages.



As mentioned before, for each rule that is analysed, the
system appends a pair of new rules with relaxing atoms and
a weak constraint, in the first program of the pair:

== 7 (3)
o [1:1] 4

where i represents the i abducible & and the latter forming
a [weight : level] weak constraint, and weight = level = 1
in our case.

The intuition behind this formulation is to compute the
GAS's of the ahductive program by violating the minimal
set inclusion of abducibles under weak constraints syntax.

Example 6: Suppose we would like to restore consistency
1o the following simple ASP program:

-ty | oy

-

P={(a + b),(c « a),{e + note),
(~z « notg), (b + T)}
The corresponding abductive program is (‘P'U@. A" ) where
P ={(a + b notay),
{¢ + a, notas), (e + note notay),
(~a < mnotyg, notoy), (b + notag)}
and A* = {ay, 2, a3, 0z}, It is not hard 10 see that the
GAS’s of such a program are:
{a, b, ¢, a5, aq}, {b.ar, aa; ~a}, {as. ~a as)

The abductive program is then transformed into a DLV's
preference program ready to be interpreted as a cardinality
preference or as a set-inclusion preference semantics:

ai— b, not alpha_1.

~alpha_1 | alpha_1. ~ alpha_1. [t:1]
ci— a, not aipha_2,

~alpha_2 | alpha_2. =~ aipha_2, [1:1)
9:— not &, not alpha_3,

—alpha_3 | slpha_3. ~ aipha_3: [1:1)
~a:— not g, not alpha_4.

—alpha_4 | alpha_4. ~ alpha_4, [1:1]
bi— not alpha_5.

—alpha_5 | alpha_5. ~ alpha_5, [1:1]

Once there is such a preference program like in Exam-
ple 6, DLV can interpret it as preferred answer sets, which
would cardinality-prefer the abducibles of the mentioned
GAS's. Although such semantics should have interesting
applications, in this case it would not necessarily give us the
minimal set of conflicting rules of the original P. Instead.
0LV should extend the weak-constraints semantics to an
additional switch that can allow the user to choose between
cardinality preference and set inclusion preference. That is
10 say, such switch would allow us to choose between those
models that violate the least number of weak constraints
ind those that violate the minimal set inclusions of the
simple weak constraints rewritten by the system. Suppose
one can make a choice, like in PSmodels®, As a result,

*The reader should recall that we mentioned before that although
Fimodels is a good allernative, it is unpractical for two reasons: the
few bugs it endures and the heavy load it is for a computer.

3

from the preference program DLV would choose the minimal
set inclusion of abducibles, which actually correspond to the
abducibles of its MGAS's

{Nﬂ, bv oy, O'3}| {a\ b’ [ 03,04}, {w’v a3, aﬂ}

from program (P’ L@, A" ).

According to the semantics introduced in Section II1, the
MGAS's shown above can give us enough information to
start debugging program P: They mean that rule p € 7’
where 0y € Body(p) conflicts with P. That is, rule
{a + b, nota;) € P, which is the relaxed form of
{a + 1) € P should be considered when debugging the
inconsistent program 7. Such is the case of the rest of the
rules.

In addition, the case of ay is worth considering. Notice
that either rule p; € P’, where a5 € Body{ps ), is in conflict
with P, or rule p; € P, where a; € Body(p,), is. or rule
pa € P', where a; € Body(ps), is. That is because rule
number five depends on the truth value of rule number one,
which are also in conflict with rule number four. So, the
metalanguage has three different minimal ways o make P
consistent by changing one of these three rules in question,
besides rule number three!

Finally, rule p € P where a3 € Body(p) is common
10 all the MGAS's and has no counterpart. That is obyious
because the rule is intrinsically inconsistent in ASP.

B. The User Interface

The user interface is a simple web page consisting of the
display of the original pair, its transformation to abductive
program and its generalised answer sets, as well as the result
of interpreting such an abductive program under MGAS and
the update answer sets of the pair, whenever DLV can prefer
under set-inclusion criterion, as we have suggested in this
paper. This is a rapid-protonype technique encoded into a
UNIX script, with some simpie sub-processes that filter in
the needed text from the DLV's formatted output, Last, this
main module is also responsible for dealing with the user
interface in HTML, by getting the input pair into a text pane
ona web page and processing it to display the output within
a new web page,

I} The Abductive Program: The abductive program is -
deed encoded into a preference relation of weak constraints.
The relation consists of & relaxed ELP where each rule has
its corresponding pair of disjunctive abducibles (3) and a
weak constraint (4).

This simple process forms the triple rule at the parsing
stage by keeping a counter for each abducible, which is
displayed once a rule is recognised as valid: the relaxed rule,
a disjunctive rule and a weak constraint. The reader should
note that such weak constraints shall be interpreted under
set-inclusion preference rather than the original cardinality
preference.



2) Computing Confiicting Rules: Computing conflicting
rules is a straightforward process that wakes the abductive
program from the previous process as an input and passes
it on to DLV, The general intuition behind this solver is to
apply the ASP-reduct of the input ELP that returns none
or more conflicting rules with their corresponding debugged
program(s).

YV, DISCUSSION AND FUTURE WORK

We have presented general methods for rapid prototyping
of logic programming and for further research on optimisa-
tion techniques. We have also implemented the declarative
version of both a debug semantics and MGAS's. The sys-
tem has been thought with strong emphasis in declarative
programming, in just some fragments of procedural mod-
ules, in order to make it easily modifiable for particular
frameworks and as an evidence to confirm claims of the
original semantics here prototyped. Another of its highlights
is ity modularity and UNIX philosophy that allows it to
he a web service and casily plugged in to other systems
even without needing to download it, Moreover, its simple
standard graphical user interface in HTML makes it very
easy to use, compared o most of the typical ASP solvers
implemented for command-line use.

Implementation is one of the main components of Logic
Programming, which helps quickly understand it (for ed-
ucational proposes and for a reliable comparison tool, for
instance). It also helps spread methods and compute large
knowledge bases for more complex applications and future
frameworks.

Some future works are in order. One of the most interest-
ing is the implementation of a module 10 get the minimal
set inclusion in DLV. Next, the complexity of the system
should be formalised, On the theoretical side, there is work
to do on consistency topics and debugging problems,

Some final informal remarks on the complexity in ad-
vance, though, are with respect to the program transforma-
tion, The transformed program should grow exponentially
with respect to the original initial program.

REFERENCES

[1] T. Eiter, M. Fink, G. Subbatini, and H, Tompits. “On proper-
ties of update sequences bused on causal rejection,” Theory
and Practice of Logic Programeming, vol. 2, no. 6, pp. 711~
767, 2002

[2) €. Sakama and K. Inowe, “An abductive framework for
computing knowledge base updates,” Theory and Practice of
Logic Programming. vol. 3, no. 6, pp. 671-715, 2003.

[3] Y. Zhang and N, Foo, “A unified framework for representing
logic program updates.” in Proceedings of the 20t National
Conference on Artificial Intelligence (AAAI-2005) M. M.
Veloso and §. Kambhampati, Eds.  Pittsburgh, Pennsylvania,
USA: AAAI Press / The MIT Press, 2003, pp. 707-713.

14

[4] J. 1. Alferes, F. Banti, A. Brogi. and J. A. Leite, “The
refined extension principle for semantics of dynamic logic
programming.” Studia Logica, vol. 79, no. 1, pp. 7-32, 2005.

[5] M. Belduccini and M. Gelfond, “Logic programs with

Spring 2003 Symposiwm.  Palo Alto, California: AAAL

Press. 2003, pp, 9-18. [Online]. Available! citeseer.nj.nec.

com/564147 himl

—, “CR-prolog: Logic programs with CR-rules.” Knowl-
edge Representation Lab—Texas Tech University, Tech, Rep.,
August 2003.

16]

J. €. Acesta-Guadarrama, J. Amazola, and M, Osorio, “Mak-
ing belief revision with LUPS." in XI International Confer-
ence on Computing, 3. H. S. Azucla and G. A. Figueroa,
Eds., no. ISBN: 970-18-8590-2. México, D.E.: CIC-IPN,
November 2002,

(71

M. Gelfond and V. Lifschitz, “The Stable Model Semantics
for Logic Programming.” in Logic Programming, Proceed-
ings of the Fifth International Conference and Symposium
ICLPASLP, R. A. Kowilski and K. A. Bowen, Eds. Sealtle,
Washington: MIT Press, 1988, pp, 1070-1080.

(8}

N. Leone, G, Preifer, W. Faber, T. Eiter, G. Gottlob, S. Perri,
and F. Scarcello, “The DLV system for knowledge represen-
1ation and reasoning.” ACM Transactions on Computational
Logic, vol, 7, no. 3, pp. 499-562, 2006.

191

[10] A.C. Kakas and P. Mancarella, “Generalized Stable Models:
A semantics for abduction” in ECAJ, Stockholm, Sweden,
1990, pp. 385-391.

|11} L Niemela and P. Simons, "Smodels—an implementation of
the Stable Model and Well-Founded Semantics for normal
logic programs.” in Proceedings of the 4th LPNMR ('97),
ser, LNCS, vol. 1265. Dagstehl Castle, Germany: Springer,
1997, pp. 420-429.

[12] E Zacarias, M. Osorio, J. C. Acosta-Guadarrama, and J. Dix,
“Updates in Answer Sel Programming Based on Structural
Properties” in 7th Internotional Symposium on Logical
Formalizations of Commonsense Reasoning, S. Mcllraith,
P. Peppas, and M. Thielscher, Eds., Fakultdt Informatik,
TU-Dresden, Corfu, Greece: ISSN 1430-211X, May 2005,
pp. 213-219. [Online]. Available: www.iccl.tu-dresden.de/
announce/CommaonSense- 2005/zacanias.pdf

[13] G. Brewks, “Logic programming with ordered disjunction,”
in Proceedings of the 18ith National Conference on
Artificial  Intelligence, AAAIL2002.  Edmonton, Alberta,
Canada: Morgan Kaufmann, 2002. [Online]. Available:
citescer.nj.nec.comvbrewkaO2logic.himi

consistency-restoring rules” in Proceedings of the AAAL |




