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Abstract. It is shown the solution of a triple pendulum in two dimensions with a harmonic perturbation using 

a nonlinear model. It is proposed a general matrix form for the model of pendulum with n-links. An analysis 

of resonance frequencies as well as dynamical states resulting from the variation of magnitude, frequency, and 

the friction among links is done. It has been found the pendulum can show periodic, quasi-periodic, and 

chaotic states. A comparison between results of the nonlinear model and its simplification for small 

oscillations is done. It is shown the analysis of the shift of resonances using transfer functions and numerical 

calculations. 

 

Keywords: Triple pendulum, resonance frequency, frequency shift, friction. 

1 Introduction 

In general and whenever possible, in the starting point of any analysis of a system it is used 

a linear mathematical model. If the model is represented trough differential equations, a 

further step is to propose a more detailed model, increasing the complexity of its equations 

and solution by using nonlinear differential equations. Due to nonlinearities in a system, 

some conditions could generate solutions with coexisting attractors or even chaotic 

behavior [1].  

The interest in the study of pendular systems is continuously increasing based on the very 

rich dynamical behavior it behaves, and because its mathematical model can be used to 

analyze very complex systems, even it used as a standard benchmark [2]. Despite the 

general models for an arbitrary number of links used to control issues of the inverted 

pendulum as in [3], it is well known the lack of general models ready to apply to an n-link 

regular pendulum. In [4] is proposed a model using equations of motion of the n-link 

pendulum fixed at upper extreme but using frictionless elements. In [2] a very complete 

model of a plane pendulum is developed for an arbitrary number of links taking into 

account friction and compliance, links with variable length and masses. Instead of using 
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previously derived equations for every single additional pendulum link as in [5-8], we 

propose a general matrix representation for the n-link pendulum with friction, having the 

characteristic of being able to separate the first derivatives of the dynamical variables, 

implying a straightforward form for to be solved with a simulation language or package 

software. Another kind of analysis tool is used in [9], where a symbolic system is used in a 

mathematical package environment. In [10], it is used a scalable model of a mechanical 

system, and the comparison between procedures of dynamic simulation is made as is 

proposed in this work. An interesting analysis is done in [11], there, authors found chaotic 

dynamics of a triple pendulum, which is controlled with a permanent rotating magneto, 

using Poincaré sections and graphs in phase space to analyze periodic and chaotic 

behaviors. Also, in [12] it is proposed a nonlinear model for the comparison between 

experimental results and calculations of new proposed nonlinear model in the regime of 

transient chaos. A study of a forced pendulum with nonlinear torsion through bifurcation 

diagrams behaving period doubling bifurcations to chaos is shown in [13]. Also, it was 

studied in [14] an experimental observations of chaos in a perturbed pendulum with 

damping by means of a torque showing alternating behavior.  

It is well known that behaviors in real systems are accompanied by both impact forces and 

the friction as in [15], where authors model a physical plane triple pendulum with barriers 

causing impacts and sliding, and investigate stability of an orbit in perturbed dynamical 

systems applying results to a piston-connecting rod-crank of a monkey-cylinder of 

combustion engine, in order to analyze the noise generated by impacts between the piston 

and the cylinder. Several practical applications of multiple links pendulum has been done, 

such as the study of a triple pendulum used in the analysis of the swing of golf club [16], 

where it is presented an investigation based on the analysis of movement of a robot 

simulated for human tasks focused in the parameterization of optimal trajectories along 

time. There, it is done the decomposition of trajectories to characterize how parameters 

influence in a predictable and controllable form.  

Pendular systems had been found application in seismic isolation of vibration [17] where, 

as in this work, it is studied the modal frequency or response of the transference function. 

Similarly, [18] presents an analytical an experimental studies of a triple pendulum used as 

insulator of linear seismic movements with a nonlinear viscosity and mechanisms of 

dissipation of energy of bilinear hysteresis. Another application is found in [19], where a 

suspension system is studied through different numerical models from triple pendulum with 

the aim of filtering the high frequencies of the seismic noise. In the same way, in [20] a 

triple pendulum is used in the suspension of the optical system designed to diminish the 

effects of both seismic and thermal noise of the suspended masses of a laser interferometer 

geographic observatory (LIGO). And finally, an interesting optimization procedure can be 

found in [5], where the response of a triple pendulum by grouping parameters are tested to 

select the best approximation for a real system.  

In this work the dynamic behavior of a plane triple pendulum is analyzed, it is proposed a 

mathematical model with weightless-links from a Lagrange equations scheme. The model 

is written in matrix form readily scalable to any number of links. Harmonic perturbation is 

applied to the upper link leaving the remaining links free to oscillate. Every link is 

subjected to friction. Once obtained the equations for an arbitrary number of links, a 
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particular case for three links is analyzed and numerically solved. The frequency response 

respect to the friction parameter is obtained finding a shift in the resonance peaks for every 

link. To verify the nonlinear model, a simplified version for small oscillations is obtained 

and compared with other results [12-14] using reduced linear models for the triple 

pendulum.  

The structure of this work is as follows. In section 2 the development of a matrix nonlinear 

model for a pendulum with an arbitrary number of links is shown, also it is obtained a 

particular case of a three links system (triple pendulum). In section 3 the separation on a 

matrix form of the first derivatives of dynamical variables is done in order to use any 

software tool or programming language to solve it. In section 4, results of the frequency 

response are shown and compared with analytical calculations using integral transform and 

obtaining the transference function. In section 5 it is showed the main results of the work 

namely, the shift of the frequency resonances and its relation to the friction parameter. 

Finally conclusions are left to section 6.  

2. Development of the mathematical model.  

The mathematical model for a multi link pendulum can be built based on the Euler-

Lagrange formulation [21],  

0














kkk

QLL

dt

d

 
  (1) 

where uTL   is the Lagrangian defined as the difference between kinetic and potential 

energy, Q are the friction losses and k are the generalized coordinates. For a multi-link 

pendulum, the components of Lagrangian function are: 
2

2

1
kkk rmT  , 

 kkhmgu and   
2

1
2

1
kkkRQ   . After replacing these terms in Eqn. (1), we can 

establish a non linear differential equations system in a matrix form for a pendulum with an 

arbitrary number of links as: 

      0,)(2  tfPRNM NNNNNNNN      (2) 
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In this work a two dimensional pendular system containing three link and masses are 

considered. The schematic representation of this system is shown in figure 1, the masses 

and links lengths are labeled as m1, m2, m3 and L1, L2, L3, respectively, and angles 1, 2, 

and 3, between each link and a vertical line. The whole system is subjected to a harmonic 

disturbance t cos0  applied to of the upper link. 

From figure 1, dynamical variables can be written as: 
111 senLx  , 

111 cosLy  , 

2212 senLxx  , 2212 cosLyy  , 3323 senLxx 
, 3323 cosLyy 

 

Using the general model (2) it is forward to write the case for the triple pendulum. The term 

for losses are given by [21]:  

   2233
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122

2

11
2

1

2

1

2

1
   RRRQ  

where R1, R2, R3, are the friction coefficients corresponding to each joint. Kinetic energy for 

every mass mi is 
2

2

1
iii rmT  , i=1, 2, 3; so, term for total kinetic and potential energy are : 

2

33

2

22

2

11
2

1

2

1

2

1
rmrmrmT  

and 332211 ghmghmghmu 
; 
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Figure 1 Schematic representation of a triple pendulum with a perturbation in the upper link.  

 

where r1, r2, r3, and h1, h2, h3, are length links and vertical distances respectively. Doing 

substitutions in equation (3), the mathematical model is depicted in a matrix format, as 

follows: 
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and Mk and Ak terms are defined as:   2

13211 LmmmM  ,   2

2322 LmmM  , 

  2

333 LmM  ,   213212 LLmmM  ,   31313 LLmM  ,   32323 LLmM  ,   13211 LmmmA  , 

  2322 LmmA  , and   333 LmA  . 

The well known special case of a linear (small oscillations) triple pendulum published 

elsewhere can be obtained from Eq. (2). This shown in appendix A.  

3. Numerical solutions 

In this work, it is proposing a way to solve Eqn. (3) by transforming the second order 

differential equations system into a first order non linear system stated in matrix from as:  

        tfPvNMd aaaaa ,
1

 


   (4) 

where:  Twvud 321   ;  Ta wvuwvuv  222  are vectors 

of six dimensions, and 

 
 











I

RM
Ma

0


 ;  

 










I

N
Na

0

0
 ;  

 










0




P
Pa

; 

 
 











0

,
,

tf
tfa


 , 



















100

010

001

I   

are 6x6 partitioned matrix Here, u, v, w, 1, 2, and 3 are the new variables. Continuing 

with validation of our main model (Eqn. 3), called from here full model, it has been done 

numerical calculations to compare with the correspondent small oscillations model (Eqn. 

A-2). In this way, figure 2 shows a typical time series for the angular displacement of third 

angle. One curve was obtained with the small oscillations model (called from here short 

model); and the other one with the full model. Both curves were obtained for the same set 

of parameters and initial conditions. For a sake of comparison, the effect of friction is 

ignored, and values for perturbation frequency and amplitude perturbation are f=0.5 Hz and 

η=0.05 m, respectively. Masses and lengths have the same values mi=1 kg and li=1 m 

respectively. 
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Figure. 2 Comparison between response of the linear model and nonlinear model in time series for the 

behavior of the third angle, with perturbation frequency f=1 Hz. Both curves were obtained with the same 

parameters and initial conditions.  

 

The non linear pendulum, as it is well known, behaves several states, such as periodic, 

quasi-periodic and chaotic, characteristic behavior obtained from our non linear model are 

shown here for completeness in figure 3. In this figure are shown time series curves for θ3 

and phase space curves for θ1 vs. θ3 angles. Curves in this figure were obtained by varying 

the frequency of perturbation and the damping constant equal to 1.0, 0.1, and 0.01 Nm/s
2
 in 

every joint.  

 

4 Frequency response analysis. 

Another interesting comparison between the two models is obtained by calculating 

bifurcation diagrams to observe the frequency response. Figures 4 and 5 show the 

resonance peaks as the perturbation frequency is varying. Although the first peak is the 

same for both models, for f>0.5 Hz the last two resonance peaks are lost for the full model 

this is because the non-linearities start to influence in the pendulum behavior. 

The other further analysis to verify the correctness for the proposing model, was done by 

using the transfer function of the system. Using (A-1) in the form 

  mlgmlRML  .  

By applying Laplace transform can be written as:        smlssgmlsRssMLs  22   

or      smlssgmlRsMLs  22   
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Figure. 3 It is shown different states typical of the pendulum obtained by varying the perturbation frequency 

and damping. a) Periodic state with f=0.3 Hz, damping of 1 Nm/s
2
, b) Cuasi-periodic state with f=1.5 Hz, 

damping of 0.1 Nm/s
2
 and c) Chaotic state with f=0.5 Hz, damping of 0.1 Nms

2
. Curves for the three angles 

corresponding to each link are shown in the time series graphs, but curve for the third angle is darker. In 

phase space are plotting angle θ1 against θ3.  

 

a) 

b) 

c) 
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Figure 4, Frequency response for the small oscillations model. It is shown three resonance frequencies for 

each angle. 
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Figure 5, Frequency response for the full nonlinear model. It is shown three resonance frequencies for each 

angle. 

 

where θ(s) is the output variable. Transfer function is defined as the rate of output to input 

variable:  

 
   gmlRsMLs

mls

s

s




2

2




   (5) 

Frequency response analysis of the system respect is displayed in figure 6. Numerical 

analysis is done through Eqn. (5), with s=jw, and w=2πf and using same constants as in 

previous calculations to get figure 4. It can be seen the three resonance frequencies and the 

same behavior of nonlinear model i.e. the first resonance is clearly defined while the last 

two are considerably attenuate.  
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Figure. 6 Frequency response diagram using Laplace transform shows the same behavior as using differential 

equation solution. 

 

5 Shift in resonance frequency.  

It has been done a study of the dynamical properties of the triple pendulum as the damping 

in the junction varies. First, in analyzing the behavior of the system around the frequency 

resonances peaks, it has been found, a slowly exponential decaying in the maximum 

amplitude of angles as friction coefficient increases. This is shown in the figure 7, where 

vertical axis correspond to the maximum angle reach for every link and horizontal axis to 

the variation of the friction coefficient keeping the same for all links ranging from 0 to 1 

Nm/s
2
. These curves have an exponential decay with a scaling law of approximately 0.50 

i.e max ~ e
-0.5R. Second, it has found that resonance frequencies behave a shift with changes 

in the friction. The behavior of this shift for the second resonance frequency peak is shown 

in figure 8 for the three angles of the system, where, to obtain every curve the range of 

frequency value was varied in the range 0.63 to 0.75 Hz, and friction constant in the range 0 

to 0.5 Nm/s
2
.  

Two different behaviors have been found as the friction varies in the joints. A behavior 

where shift is independent for small values of the friction parameter meaning that for 

Rk<0.1, the friction does not displace the picks of resonance; the same behavior happens for 

Rk >0.3. In the middle, for values of R ranging from 0.1 to 0.3, a linear behavior has been 

obtained  meaning that the shift in resonance peaks grows lineally with the friction with a 

slope of 0.25 i.e. fr=0.25R.  
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Figure. 7 Maximum values in steady state for each angle using a frequency equal to the first resonance peak. 

 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Friction coeficient

S
h
if
t 

fr
e
q
u
e
n
c
y

 

 

Angle 1

Angle 2

Angle 3

 

Figure. 8 This is a behavior for the shift of the second resonance frequency peak. Two different behaviors can 

be seen, one where friction does not influence the peak in frequency and other where the shift grows linearly 

with damping parameter. 

 

6 Conclusions 

For a non linear matrix model based on a Lagrangian formulation obtained for a pendulum 

with n-links has been proven its applicability and simplicity of use based on the 

representation stated here (with the first derivatives of the dynamic variables yet separated). 

Such representation has a direct implementation in a computational language or software 

package, so it can be written directly a model for a pendulum with any number of links.  

Using the special case for three links, a model has been obtained in full agreement with 

models stated elsewhere for three links. Our non-linear model were validated using a 

linearized (or small oscillations) version by getting time series graphs with similar dynamic 

behavior in the limit case.  

In the analysis made for the frequency response, three different strategies were used to 

compare picks of resonance, one by means of the linear model, other by using transfer 

functions based on Laplace transform, and with our non-linear model. The comparison of 

the position of the peaks of resonance in each case in almost exact, validating in this way 

our model.  
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A last main result has been obtained in the analysis of the shift of frequency resonances. It 

had been observed two distinct behaviors, one where the friction in the joints does not 

affect such resonances and other where the shift in the frequency of resonance follows a 

linear scaling law.  

Having laws governing the behavior of a system is critical in the design of a structure or 

mechanism, so this works provides a method for analyzing how the resonance frequency 

peaks behave in the case of a changing in the parameter of the system. 
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Appendix A 

Obtaining small oscillations model from the non linear model. 

In order to validate above model of Eqn. (2), the most known linear case of small 

oscillations can be obtained from it (  sin ), resulting for a n-link pendular systems with 

small oscillations. From the linear model with an arbitrary number of links,  

0 NaNNNNNNNNNN lmlgmRLM    

where: 
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The case for 3-link, small-oscillations pendulum can be written as:  

0 amlgmlRML      (A-1) 

where: 
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This is in complete agreement with the well-known small oscillations model [21]. The first 

derivative separated version becomes 

 ElmlmGMLd EEEEEEEE    11     (A-2) 
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are 6x6 partitioned matrix: 

 


