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1 Introduction

We denote by [Bj, Bs| the set of all bounded linear operators mapping the Banach space B; into the Banach
space Bs, [B1] = |B1, B1].

It is known [1] that for any operator A = X + ZY, where X, Y, Z € [B1] and Z is an involution, Z? = I, the
Gohberg—Krupnik matrix equality

A 0],
H[O AJH =D,

is fulfilled, where A; is an additional associated operator, A; = X — ZY, and
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We denote the Cauchy singular integral operator along a contour I" by
L [ o)
S t)=— | —=d
Sro)t) = = [ £ ar

and the identity operator on I" by (Ir¢)(t) = ¢(t).

Suppose that X = alr + ¢Sr, Y = (Zb)Ir + (Zd)Sr, where a, b, ¢, d are bounded measurable functions on
T and (Zrp)(7) = ¢(—7). We denote the unit circle by T and the real axis by R. The matrix equality takes the
form

" [(IIF +bZr + ¢Sr + dZrSr 0 H™' =D, (1.1)

0 alr — bZr + ¢Sr — dZr St
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where Dr is a matrix characteristic singular integral operator:

Dr = [(Zﬁb) (Zi)ra)] fot [(zfm) (zfrcﬂ o

e = [(2?@) (sz)} fet [(zf«z) (zia] 5

The operators Dy and Dy are different because Z is an orientation-preserving shift on T, Z1.St = StZ, but on
R it is an orientation-reversing shift , Zgr Sg = —Sr Zr.

In the article [2] we obtained a direct relation between the operator A with a model involution and a matrix
characteristic singular integral operator without additional associated operators: for an orientation-preserving
shift it is a similarity transform FAF ~! and for an orientation-reversing shift it is a transform by two invertible
operators HAE. We formulate these results below.

Let I' and y be contours, and let v C I'. The extension of a function f(t), t € 7, to I'\ 7y by the value zero, will
be denoted by (Jr\, f) (t), t € T. The restriction of a function ¢(t), t € T', to  will be denoted by (C,¢)(t),
t € ~. The characteristic function of the set -y given on I' will be denoted by x,(¢), t € T

Let L, (T, p) denote the space of functions on I" which are summable in the p-th power after multiplication by
the weight-function p, and let L;*(T', p) denote the space of m-dimensional vector-functions with components
from L, (T, p).

We define £ = {2 : [z| = 1, 0 < argz < 2n/m}, (Win)(t) = ¢(emt), €m := cos 2 + isin 2Z and

m

Cro
¥1 m C.W,
LWme
M| |= ZWnZkHJT\LsOm M € [L3(L), Lo(T)], M~ lp = . ;
om| =1 :
CcWimte
M L ror=)k—r-nm -1 — L re-nG-rinym
- ﬁ [5 }k,r:l’ ﬁ [E }k,r:l’
0 1
0 1
V= ) , IT'WII=Q, Q=diagll,e',....e"'];
.. 1
1 0

G(t) =diag [1,t',....t" '], G7't)=diag [1,t7",...,¢t'7™"], teL;

(NO)(t) = ¢(t™), N e [LE(T), Ly (L)], (N7X)(t) = ¢(t7).

Theorem 1.1 ([2, Theorem 2.16, p. 240]) The singular integral operator A with the shift-rotation W, at the
angle 27 /m and bounded measurable coefficients,

_

A= 5 [ak(t)l'[[‘ + bk(t)S'[[‘]le, Ae [LQ(T)],
k=0

is similar to the matrix characteristic singular integral operator Dr:

Dy =F'AF, Dr=ulp+vSr, Dre Ly (T), (1.2)
where

F = MTIGN € [L5Y(T), Lo(T)], F '=N'G T 'M~' € [Ly(T), LT (T)].

www.mn-journal.com © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



1110 Karelin: Applications of operator equalities

The connection between the coefficients of the operator A and the coefficients of the operator Dy is given by the
formulas:

|:t(1—k)/m€(k—1)(k—7“+1) E(r—l)(k—r—l)t(r—l)/m] m
u = s
k,r=1

S | e

t(A=k)/m o (k=1)(k—r+1) m e(r=1)(k=r=1)4(r=1)/m m
v(t —[ ] vl(tl/m)[ } , teT,
\/ﬁ k,r=1 \/ﬁ k,r=1
where
ap(t) a1 (t) ceram-1(t)
am_l(st) ao(st) . al(et)
Ul(t) - . . . . B
a1 (Em_lt) ag(Em_lt) - ao(Em_lt)
[ bo(t) by (t) (2]
bm—1(gt) bo(et) . b1(et)
vy (t) = . . ) . , tecL.
(b1 (e™71t) ba(e™TME) ... bo(e™ i)

Now we formulate a theorem for the case of an orientation reversing shift.
We denote the positive semiaxis by Ry = (0, +00) and the negative semiaxis by R_ = (—o0,0);

82 1)
@) = Y pla@)), a@) =20 ser per #1p>0

Q is an involution, Q% = I generated by a Carleman linear-fractional orientation-reversing shift, a(a(z)) = z;

@) = =020 (07 = e ).

To — T To — X x+130 r+1

where
21 =0—\02+B, z2=0+/02+p;

(N, @)(t) = 9(t?),  (Nzle) () =¢(Vi);

Sg, +Uir, 0|

P B 2

Ir
1 |1 1
+1_ L .
=2l s
Mg [‘pl _ 301(75), teRy, M—l(p _ |: e(t) ] teRy;
T 2 @a(—t), tER_, Ry o(—t)]’ ’

CAS [LQ(R)L P e [Lg(RJr)L NR+ € [Lg(RnLvti%)aL%(RJr)]v MR+ € [Lg(R+)7L2(R)]

Theorem 1.2 ([2, Theorem 3.11, p. 244]) The singular integral operator B with the involution @, with
bounded measurable coefficients,

Br = alg +bQ + ¢Sk + dQSr, Br € [L2(R)],
can be reduced by invertible operators to the matrix characteristic singular integral operator Dy, :

Dr, = HBgE, Dg, =ulg, +vSz,, Dg, € [L3(Ry,t71)], (1.3)

(© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com
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where
H=Ng I Mp'07" € [L3(Ry), L (Ryt4)],
£ = OMgIIPNg, € [L3(Ry,t7 1), LA(R,)].

The relation between the coefficients of the operator B and the coefficients of the operator Dr__ is given by
the formulas:

1 [(C(C+(t))+d(4+(t))) (e(¢-(#))

®))

A
J‘\
iy
=
=
=
=
~
IS
2
Y
+
iy
=
=
=
.
S
=
'
+
By
=
=
=
=
\
~
IS
2

() +d
(c(C4 (1)) + d(C(2))) + (c(C-(2)) + d(

ot) = 1 [(a(C+(t)) = b(¢+(1))) + (a(C- (1)) = b(¢-(1)))  (c(¢+(t)) — d(C+(2))) + (e(C-(F) — d(C—(t)))] L5)
2 | (a(C () = b(C+(1)) = (a(C- () = b(C- (1)) (c(Ce(t) — d(Ce(t)) — (c(C—(8) — d(¢- ()| '
where
. TVt + 11 . —z9V/t + 11
<+(t)* \/E—f—l ) C*(t)* _\/£+1 ) t€R+'

We will refer to formulas (1.2) and (1.3) as operator equalities. In this paper we will use the operator equalities
to study the invertibility properties of singular integral operators.

In Section 2, we consider a Riemann boundary value problem with shift and piecewise constant coefficients.
In Section 3, we consider a special case of the matrix characteristic singular integral operator. The coefficients of
the operator are piecewise constant matrix-functions having at most four different values.

We are interested in the questions connected with solvability problems: descriptions of the kernels, conditions
for the invertibility, construction of the solutions which are more detailed than the study of Fredholm properties
(11, [4].

Using the operator equalities we obtain conditions for the existence and uniqueness of solution to the boundary
value problem and conditions for the invertibility of the matrix characteristic operator.

2 Riemann boundary value problem with piecewise constant coefficients

We consider the following problem: find an analytical function ®(z) in the strip 7' = {z : =1 < Imz < +1}
subject to the functional relation

A@)®(x + 1) + B(x)®(z — i) + C(a)B(x) = H(z), @.1)

where © € R, R = (—o00,+00), the coefficients A(z), B(x),C(x) are bounded measurable functions, and
H(z) € La(R). We assume as well that ®(z + i) € L2(R), ®(z — i) € La(R).

Our main aim in this section is to obtain conditions for the existence and uniqueness of solution to the boundary
value problem for the case of piecewise constant coefficients with two different values and a point of discontinuity
atz = 0.

We start with the formulation of a result about invertibility of characteristic singular integral operators with a
certain piecewise constant matrix-function [5], [6].

Let L,(R,0) = {f : of € Ly}, 0= (1 +t2)y/2 [tolt—1", 1 <p<oo,vg =1-— % —v -1y — 1,
—L <y <1-4,k=0,1,2.

Given two non-singular constant matrices .A and B, following [5] we denote the arguments of the eigenvalues
of A, A='B and B~! by 27mvor (A, B), 27011 (A, B), and 2rvax (A, B) (k = 1,2), respectively. In case the
matrices A and I3 have common eigenvectors, let us agree upon attaching the same subscript k to the gammas
associated with the corresponding eigenvalues. If the matrices .4 and B share (up to linear dependence) exactly
one common eigenvector, we shall label the corresponding gamma by the subscript ¥ = 2. We introduce the
numbers

2
(A B) = > vk (A, B) + [0 (A, B)]),  3;u(A,B) = % +vj — vk (A, B),
£

J 2.2)

k=12, j=0,1,2.

www.mn-journal.com © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



1112 Karelin: Applications of operator equalities

By [x] we mean the integral part of x.

Theorem 2.1 ([5, Corollary 2, p. 248]) For the operator R(Ggr) = PH{ + Gr Py, generated by a matrix-
function Gr = F2X(—x0,0) +AX(0,1) T BX(1,400), t0 be invertible in LZ (R, 0), it is necessary and sufficient that
the constant matrices A, B are non-singular, that the numbers 01, (A, B) are non-integer, and that at least one of
the following conditions hold:

(i) A and B have no common eigenvectors and 11 (A, B) = —l2(A, B);
(ii) A and B do not commute, possess a common eigenvector, and 11 (A, B) = —I3(A, B) > 0;
(iii) A and B commute and 1, (A, B) = lI2(A, B) = 0.
Let AL, B4, C4 be constants.
Theorem 2.2 Let 3A, + By # 0 and 3A_ + B_ # 0. If the matrices

2 3A+A_+Bi+3B_+4i(Cy+C_) 3A;—A_+B;—-3B_+4i(C++C-) 2.3)
34, +By |-3A,4+A_ —B,+3B_+4i(Cy+C_) —3A,—A_—B,—3B_+4i(CL+C_) '
and
2 AL +3A_4+3B4y+B_+4i(C4+C_) —A;+3A_—3B,+B_+4i(C4+C-) o
~ 3A_+B_ |A,—3A 43B,—B_+4i(C;+C_) —A,—3A_—3B,—B_+4i(C1+C_) '

satisfy the conditions
(a) det A #0, det B # 0,
(b) fork =1,2,and j =0, 1,2, the numbers 6;}, are not integers,
(c) one of the three conditions (i), (ii), (iii) is fulfilled,

then the Riemann boundary value problem with shift (2.1):

A(x)®(x +1i) + B(z)®(z — i) + C(z)®(z) = H(z), =z €R,
and piecewise constant coefficients
Alr) = Axr_ () + Ay xr, (2),

B(z) = B_xr_(z) + By xr, (v),
C(z) = C_xr_(2) + Cyxr, (),

admits a unique solution.

Proof. To prove the theorem we follow the schema of [3].
According to [4] the boundary value problem (2.1) can be transformed to the following integral equation with
endpoint singularities considered on the space Ly (7),

ar(@ur(e)+ 8 [2OF 2O [wrD8 g 7o (11, @9
where
ur(€) = AL+ BEE),
e = AL~ BAED)
7€) = ~iCH(©)]
orle) = T8
v(§) = %ln 1 J:g

(© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com
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The solutions of problem (2.1) and Equation (2.5) are connected by

Y[y(©)]
Vi€

where F and F'~! are the direct and inverse Fourier transformation.
Taking into account that

wr (&) = Y(2) = (Fw)(x), w(@)= [exp(z) + exp(—2)](F~'®)(x),

% . ;Ui—(;)_ dr = —(CrQ1SrJr\7wr)(§), £€T,

where ( is an involution generated by the points 1 = —1, x5 = +1,

@r9)(&) = gla(@), ale) =1, R,

z
rewrite (2.5) in the form
(KTwT)(f) = gT(f), Kr=a7Ir +c7 57 + dTCTQTSRJR\T, Ky e [LQ(T)]

Here

ar(§) = 5 m[(A- + B_)x(=1,00(§) + (A + By )x0,1)(&)],

cr(§) =~ m[(A- — B_)X(=1,0)(§) + (A+ — B1)x(0,1)(&)],
dr(§) = —mi[C_x(—1,00(§) + Cx0,1)(§)], §€T.

Extend the operator K7 to the whole real axis R:

== N =

KHIQ = arlr + CrSR + JRTRSM
where

ag = (xr\7 + Jr\707T), CR = (JR\TCT), dx = (Jp\7d7).

The operator K7 is invertible in the space Lo(7) if and only if the operator K} is invertible in the space La(RR).
Note [3] that if K }1 is the inverse operator of K7, then the operator

1 _
(Kz) =xe\rlr + Je\r K7 Cr (Ix — Kpxeyr1R)
is the inverse operator of the operator K. I and if (Kf{) -1 is the inverse operator of K. 1 then the operator
_ -1
K7'=Cr(Kg) Ja\1

is the inverse operator of the operator K.
Applying the operator equality (1.3) to the equation (K H%go) (r) = Jr\797, We obtain the equivalent matrix
characteristic singular integral equation

Dg,Yr, = gr,, Dr, =HKLE =ix, I, +0r,Se,, Dg, €[L3 (R+7t7%)}, (2.6)
where

~ ~ 2 _1

gr, = Hp\r97, Jr, € L3(Ry,t71),
and the coefficients have the form

~ 1 [ﬂu(t) ﬂlg(t)]7 =

0= 3 00t amt)

www.mn-journal.com © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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1114 Karelin: Applications of operator equalities

with
~ - 1 ] 1 .
T (6) = () = | (A= = Bo) = O X0+ | 7l = B1) = 7iC4] x0(0)

(Ay + By) - 1} -

Ua(t) = |:17T(A_ +B_)+ 1] X(1,00)(t) +
v11(t) = u22(t),

U1 (t) = u12(t),

m(Ay + By) + 1:| X(O,l)(ﬂ)

v12(t) = vaa(t) = B m(A- —B_)+ m'C—_ X(1,00) (1) + {

1

1 7(Ar = By) +miC | xon (0)-

The solutions of Equations (2.5) and (2.6) are connected by

U, (t) = (€7 (Jmyzwr)) (1)

Note that the coefficients ur . and UR , are piecewise constant matrix-functions with two values and a point of
discontinuity at = 1 on the contour R .
The operator Dy is extended on R_ = (—00,0)

Dity=Jr_gr., Dh=(xz_ +Jr_tir.)lz+ (Jo_U,)Se, Die [L3(R,¢t71)].

The operator Dg . isinvertible on the space L3 (R+, t‘i) if and only if the operator l~)§ is invertible on the space
L3(R,t%).
Rewrite the operator D}, using the projections Py” = % (Ir 4+ Sr) and Py = & (Iz — Sg):

Dy = RU,V) =UB; +VPy,

where
U= Eaxr_ +Uo0,1)X(0,1) T U1,00)X(1,400)>
V= Eaxr_ + V0,1)X(0,1) T V(1,00)X(1,400)>
Ey = diag[L 1]7
U 1 -%(A++B+)+%(A+*B+)77TC++1 %(A++B+)+%(A+*B+)+7TC+*1
01 =73 s s s s
2|Z(A4 +By)+ Z(Ay —By) —7mCy —1 Z(Ay 4+ By)+ Z(Ay —By) +7C4 +1
y 1[3(A-+B_)+3(A-B_)—7C_+1 Z(A_+B_)+5(A-B_)+7C_—1
(1,400) = 5
2 |Z(A4+B)+Z(A-B)—7C_—1 Z(A_+B.)+%Z(A-B_)+7C_+1
. 1[5(A-+B_)-3(A-B_)+7nC_+1 —-Z(A_+B_)+Z(A-B_)+nC_+1
0,1) = 3
O0 T (A4 BL) (A -B_)+7C_ 1 —T(A_+B_)+Z(A-B_)+nC_—1
. 1[5(As +By) = 5(Ay —=By) +7Cy +1 —F(Ay +B4) + 5(Ay — By) + 701 +1
(Lto0) =5 | - T '
2 i §(A++B+)—(A+—B+)+7TC+—1 §(A+ +B+)+Z(A+—B+)+7TC+—1

We assume that det(ur + Ur) # 0, or det(Faxr_ + U0,1)X(0,1) + U(1,00)X(1,400)) 7 0, 0r

2 2

detZ/{(O,l) = 73A+ i B+ # 0, detZ/{(l,OO) = 7314_ i B_

£0.

(© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com
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Having calculated the matrices A = M@}l)v(071) and B = u(;}+oo)v(17+oo), we obtain

Gr = (xg_ + Jr_(tr, +7r,)) " (xr_ + Jr_(Ur, — Ur,))
=u'v
= xr_E2 + X(0,1)A + X(1,4+00)B)-
Here the matrices A and B are given by (2.3) and (2.4) respectively.
Consider the operator R(Gr) = Py + GP5 acting on the space L2(R, g), o(z) = |2|~1/*.

The matrix Gg(x), € R, is a piecewise constant matrix-function with three values and points of discontinuity
atz = 0, z = 1. Applying [5, Corollary 2] to the operator R(Gr ), we complete the proof of the theorem. o

3 Invertibility of matrix characteristic singular integral operators with coefficients of a
special structure

Let us consider the weight space L,(R, pw), p > 1, (pw)(z) = szl |z — x|, v = -1, 290 = 1,23 =0,
x4 = 1 with the norm || f|| 2, pw) = W fl L, (®)> assuming that the following conditions hold:
-1 p—1 I p—1 ! p—2
— <p; <—, j=123; —<Zuj<—; NBZ*ZN]'*F—' (3.
p p P P = P
In the space LP(R, pw ) consider the operator Dg = ulg + v.Sg with coefficients which are piecewise constant
matrix-functions with three points of discontinuity atx = —1,2 =0,z = 1:
a_o b,Q a_1 b,1 a_1 b,1 a_o b,Q
u = Coo—1) _ +V Vv +V v 00) 9
[b+2 a+2} X(=o0,=1) |:b+1 a+J X-1,0) |:b+1 a+J X©.+1) [b+2 a2 X(1,00)
C_2o —d_2 C_1 —d_1 C_1 —d_1 C_9o _d_2
= Ceo—1) _ -V 1% -V VX(1.00),
{d+2 C+2] X(=o0,=1) [dﬂ C+1] X(=1,0) |:d+1 C+2} Xo.n {dn —cyq | XL00)
where
0 1
=l

From (3.1) it follows that Sg € [L,(R, pw )] and Wg € [L,(R, pw)], (Wre)(z) = p(—2z).
In this section conditions for the invertibility of the operator Dy in the space L, (R, py) are obtained.
We introduce the functions

a(z) = a—2X(—00,—1) () + a—1X(—1,0)(%) + a+1X(0,1)(T) + A+2X(1,400)(T),
b(x) = b_oX(—00,—1)(®) + b_1X(=1,0)(%) + by1X(0,1) (%) + braX(1,400)(T),
() = c—aX(—o0,—1)(®) + co1X(=1,0) (%) + c4+1X(0,1) (T) + C+2X (1,4 00) (T),
d(x) = d—2X(~00,—1)() + d=1X(=1,0)(T) + d+1X(0,1) () + d2X(1,400) (),
and construct the matrices

+ —1| a—1te1 Fboaxd 1| 1| a2—c2 EbFd_1|| a_1—c_1 Fb_1Fd
A det |::Fb2:Fd2 a_g9—C_2 +b_otd_ o9 a_1+c_q ||Fb_otd_o a_s+c_o ’
(3.2)

Bt — _det—1| @1 TCH Fbi1£dia 1| G422 tbi1Fdi || ap1—cy1 FbiaFdia o
FbioFdia aya—cqo +byotdis atitcyr | |Fbyotdis agatcyo ’

where

1 |1 1 1 0
-7k Aol b
Using definitions (2.2) of Section 2, we introduce the constants l,f =l (Ai, Bi) , (5?% =k (Ai, Bi).

www.mn-journal.com © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



1116 Karelin: Applications of operator equalities

Theorem 3.1 Let

fa_1+co1 Fb_1£d_,

det
¢ | Fb—2Fd-2 a-2—c2

B

and let

det

[ a41+cCyq :Fb+1:|:d+1 7& 0
| FbiraFdia aj2—cyo '

In order that the operator Dy,

a(z)  b(x) clx)  —d(x)
Dr = I S
<= o) o] " sy —etom] 5
with piecewise constant coefficients and points of discontinuity at x = —1, x = 0, x = 1, is invertible on

the space L, (R, pw), it is necessary and sufficient that the matrices A*, B and A=, B~ have the following
properties:

(a) det AT # 0, det Bt # 0 and det A~ # 0, det B~ # 0;

(b) fork=1,2,and j = 0,1, 2, the numbers 6;'; and Sj_k are not integers;

(c) for the pair A*, BY and for the pair A=, B~ one of the following three conditions (i), (ii), (iii) is fulfilled.

Proof. By the Gohberg—Krupnik matrix equality (1.1)

1 |: Ir Ir :| [aIR + bWgrIr + ¢Sg + dWgr Sk 0 :| |:IR Wg

Z = D
2| Wr —Wgr 0 alp — bWrIR + cSg — dWRSR | | Ir WR:| ®

that the singular integral operator Dy is invertible on the space L, (R, py ), if and only if the operators B =
By = alg + blg + cSr + dQSg and B_ = alg — blg + ¢Sg — dQSr are invertible operators on the space

Lp (R, PW ) .
Applying the operator equality (1.3) to BT and B~, we have

Dy, = HB*F =ug I, +vg, Sk., Dg, € [L;(Ry,0)].

The weight pyy is transformed to

1 1 1
E Yo — 1|7 — 4l = — - — E = — .
o(z) = |z |z — 1" |z —id[",  wo 5 (Nl p), vi= g, V=g

From formulas (1.4), (1.5) the coefficients of the operator Df&i are

1 (C_1 id_l) — (6_2 id_g) (CL_1 ib_l) — (a_g ib_g)
Ui{l (t) - 5 |:(C_1 + d_l) + (0_2 + d_2) (CL_1 + b_l) + (a_g + b_2):| X(O’l)(t)
1 [(C+1 tdy1) = (cr2ddy2) (ag1Eb41) = (a42 £byo)

t),
2 [(e41+dyn) + (c42tdi)  (a41Ebia) + (ag2tbso) ] X, (0

vE (1) = 1 [(CL_1 Fbo1)+ (a—2Fb_a) (cc1Fd-1)+ (cc2Fd_2)
R 2 [(a—1Fb_1) —(a—2Fb_2) (co1Fd-1)—(c—2Fd_2)

(a+1Fbi1) + (a2 Fbi2) (c41Fdyr) + (cr2 Fdi2)
(@41 Fbs1) = (a2 Fby2) (41 Fdi1) — (c42 Fdia)

} X(0,1)(?)

X(1,00) (t)-

1
2

Extend the operator Dﬁl& to the entire real axes D = Jg,Cr_ + Jr_ Dﬁa Cr,, Dy € [L2(R, 0)], and rewrite

Dﬁ{ using the projections
Di =Uy P +ViFy,
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where
Uﬁ: =xr_ + Jr_ (UI:RF + ’Ui&), Vﬁ: =xr_ + Jr_ (uﬁ{ — ’Ui&).

The matrices UE = uﬁg (t) + vﬂi (t) and Vi = uﬁg (t) — vﬂi (t) have the following form

U = xe_

a_1+c_1 ¢b,1id,1 a1+ Cc41 :Fb+1:|:d+1
Jr TI b
R {[ FboFd g a_g—c_o |XOD + FbioFdis  ago —cpo |1

Vi = XR_

a_1—c_1 Fb_1Fd_: 41 —cy1 FbyiFdy
— Jr_II 1IQ.
R {[ Fb_otd_o a—o+c_o }X(O’l) + [ Fbiotdis  ayo+cpg |

We assume that det [uﬁi (t) + vf@ (t)] # 0, or, rewriting in an equivalent form,

a_1+c :belidfl a41 + C41 :Fb+1:|:d+1
det 0.
e {[ TbooFdoy ag—c o |XODT FhiaFdes in—cip | X029 #

Having calculated the matrix G+ = (u&#)—lvi, we obtain G* = yr_ + Aix(oyl) + Bix(lyoo), where the
matrices A* and B+ are given by formulas (3.2). The operator R(G*) = P +G* P is invertible on the space
L2(R, g) if and only if the operator Dﬁi is invertible on the space LZ(R, o).

Applying [5, Corollary 2] to the operator R(G*) we complete the proof of the theorem. O

Analogous results can be obtained for the operators A € [L,,(T, p)] with an orientation-preserving shift Wy =
Wa, (Wre)(t) = (—t):

A = alr + bW + ¢St + dW St;

as well for the characteristic singular integral operators Dt € [L2(T, p)]:

i Psegnied] RS Pt B

where the coefficients of A would be such that the coefficients of the operator F~!' AF from the operator equality
(1.2) would be piecewise constant matrices with three points of discontinuity.
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