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We derive a set of effective potentials describing the interaction between pairs of nucleotides that belong to
an RNA molecule. Such interaction potentials are then used as the main constituents of a simplified simulation
model, which is tested in the description of small secondary structure motifs. Our simulated RNA hairpins are
consistent with the experimental structures obtained by NMR.
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I. INTRODUCTION

RNA is one of the most important molecules for life. For
instance, different types of RNA molecules perform multiple
tasks that include the translation of genetic information, bio-
logical catalysis, and structural scaffold �1�. A specific ex-
ample is the case of an RNA called XIST that has the power
to turn off an entire chromosome �2�. Like proteins, RNAs
adopt complex three-dimensional �3D� structures to achieve
their functions. Therefore, a classic problem of biophysics is
the determination of the 3D native state of an RNA molecule,
based on its linear sequence of nucleotides or primary struc-
ture. The solution to this problem will be of outstanding
value for medical and biochemical applications.

The problem of RNA folding has been studied with varied
approaches. One direct strategy is to start with a secondary
�base paired� structure of a given molecule and then use it as
a template to construct a compatible 3D structure �3�. The
entire procedure eventually demands an interactive manipu-
lation or a further refinement by molecular-dynamics �MD�
simulations. Otherwise, a number of coarse-graining models
can be found in the literature. Among them, we can mention
the discrete molecular dynamics �DMD� that has been used
to fold RNA molecules with relative precision �4�. The non-
continuous energy function of such model includes base pair-
ing, base stacking, and hydrophobic interactions. Another ex-
ample of a coarse-graining model is the nucleic acid
simulation tool �NAST� �5�. Different types of statistical in-
formation contribute to the NAST protocol such as short-
range interactions �distances, angles, dihedrals, and excluded
volume� and long-range contact interactions. In this model,
the secondary structure has to be provided as well. On the
other hand, it is possible to study the whole folding process
in full detail. A method of this kind consists of using an
optimized MD algorithm within an all-atom model in the
explicit solvent �6�. This approach, however, requires a vast
computational effort even in the case of a relatively small
RNA molecule. It is thus desirable to combine the advan-
tages of these methods, i.e., simplicity and accuracy.

In this paper, we propose a simulation model of RNA that
is based on a series of continuous pairwise potential func-
tions that are extracted from experimental data. In our
scheme, each nucleotide of an RNA sequence is replaced by
its corresponding center of mass. The interaction between

centroids is mediated by effective pair potentials �EPPs�,
which are either angular or radial, and each EPPs is indepen-
dent of the other ones. Our model utilizes a total amount of
21 EPPs �11 angular and 10 radial�, but the number of de-
grees of freedom is significantly reduced, in comparison with
an all-atom model. Otherwise, the resulting structures of our
Monte Carlo �MC� simulations reproduce some of the most
relevant features found in experimental molecules.

II. EXPERIMENTAL INTERACTION POTENTIALS

We define an EPP as the potential energy between two
“particles” that recreates their corresponding pair-correlation
function �7�. Accordingly, each EPP has the integrated con-
tribution of both direct interactions �e.g., Coulomb, hydrogen
bonds, or excluded volume�, as well as indirect ones �sol-
vent, surrounding ions, among others�. In the case of biomol-
ecules, we have already tested a model that makes use of
EPPs as principal constituents. As a result, our model of
polypeptides reproduced three secondary structures of pro-
teins �8,9�. At this point, it is important to emphasize that
models based on EPPs are expected to generate structural
features that are only consistent with the conditions of the
original experiments. For example, the experimental RNAs
analyzed in the present study are characterized by a pH of
7�1 and a temperature of 281�7 K.

Our knowledge-based potentials were obtained from the
analysis of a series of 20 crystallographic structures of RNAs
of high molecular weight from the Protein Data Bank �PDB�,
mainly ribosomes such as 1ffk, 1njp, and 2b66. These large
structures are assumed to be in thermodynamic equilibrium
�9,10�. In the present model of RNA, we are interested in
three types of pairwise interactions, namely, bending, tor-
sion, and distance-dependent energies. All of them are de-
rived from their corresponding pair-correlation functions
g�����, where � is the independent variable and the sub-
scripts � and � stand for A, C, G, or U. In order to take into
account finite density effects, the radial-dependent effective
potentials �u���r� ��−1=kBT is the thermal energy� can be
related to the functions g���r� by means of the multicompo-
nent Ornstein-Zernike equations and a suitable closure ap-
proximation. In all cases under study �8–10�, as well as in
the case of RNA molecules, we found that the many-body
effects are negligible. Thus, our EPPs �both, radial and an-
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gular� are determined through the low-density limit expres-
sion �11�,

�u����� = − ln�g������ . �1�

Let us first start by computing the bending correlation
functions from the averaged properties of the experimental
data. The vector associated with the pairs of nucleotides
�i , i+1� is ai+1=ri+1−ri, with ri being the position of the base
i. The bending angle � is obtained from the relation �
=arccos�−ai+2 ·ai+1 / ��ai+2��ai+1���. Hence, such correlation
functions are determined on the understanding that
���g�����d� is the number of nucleotides of species � and
�, which are located between two cones of apertures � and
�+d�, and centered in a nucleotide of arbitrary species.
Here, the number density is ��=1 /90°. Within experimental
errors, all correlation functions g����� are very similar.
Therefore, we averaged them in a single correlation function
g���, which is then used in Eq. �1� to obtain �u���. In Fig. 1,
we plot the bending effective potential together with a Padé-
type fit of the experimental data. The position of the mini-
mum of the potential well is �151�4�°.

The torsional correlation functions are calculated in a
similar way to the previous case. Our torsion angle is defined
as 	=�+arctan 2��ai+2�ai+1 · �ai+2
ai+3� , �ai+1
ai+2� · �ai+2

ai+3��. Correspondingly, �	g���	�d	 is the number of
nucleotides found between the angles 	 and 	+d	. The
number density in this case is �	=1 /180°. The interaction
potentials are then obtained from the correlation functions
g���	� by means of Eq. �1�. For example, the torsional EPPs
corresponding to the pairs of bases GC and AU are plotted in
Fig. 2, as well as their fitting curves. As it can be observed,
the two EPPs are quantitatively different in regard to the
position and depth of their respective potential wells. The
positions of the potential wells of curves GC and AU are
�202�8� and �247�8�°, respectively.

The distance-dependent correlation functions are derived
from the remaining pairs of nucleotides �i , j�, with j� i+4.
Although we have selected some of the largest RNA crystal-

lographic structures, it is necessary to take into account the
effect of finite size of such molecules. Let us first define a
test sphere of radius rmax and volume V=4�rmax

3 /3 that con-
tains one or two types of bases of species � and �, with at
least 50 nucleotides of each type and homogeneously distrib-
uted inside the test sphere. For a given distance r, the radial
distributions g���r� are determined through the equation �9�,

g���r� =
NV

N�N�
� h��r�

N4�r2dr − N�Vc�r�� , �2�

where N� and N� are the numbers of particles of species �
and � inside the volume V, N=N�+N�, and h��r� is the total
number of nucleotides of the same species between two con-
centric spheres of radii r and r+dr, about a central one, as
shown in Fig. 3. If the central nucleotide is found inside the
sphere of radius rmax−r then Vc�r�=0 �region I�. For a cen-
tral nucleotide located outside region I and still inside the

FIG. 1. �Color online� Bending effective pair potential �u���
extracted from the experimental correlation function g��� �open
squares�, as explained in the text. The continuous line is a Padé-like
fit of this potential.

FIG. 2. �Color online� Torsional EPPs �u���	� between the
pairs GC �open circles� and AU �full triangles�. To enhance clarity,
�uGC�	� is presented with an offset of 2 kBT. The continuous lines
are Padé-like fits of the potentials GC �upper blue line� and AU
�lower cyan line�.

FIG. 3. �Color online� Scheme of the geometry employed to
correct the effect of finite size, which is used to derive g���r�.
Given a test sphere of radius rmax and a certain distance r, we define
regions I �inside a sphere of radius rmax−r� and II �between the test
sphere and region I�. For nucleotides located inside region II �t, for
example�, there is an excess volume �gray filled� that has to be
subtracted for an appropriate normalization �see text�.
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test sphere �region II�, Vc�r�=���rmax
2 −r2�ln�1−r /rmax�

+3r2 /2+rrmax�dr, with N� �in Eq. �2�� being the number of
particles found in region II. The function Vc�r� is thus a
correction to the effect of finite size. The 10 different poten-
tials �u���r� were calculated using Eqs. �1� and �2�. Not
surprisingly, the potential curves with the deepest potential
wells are those identified as Watson-Crick base pairs,
namely, GC and AU, which are plotted in Fig. 4. The poten-
tial wells of curves GC and AU are located at 11.4�0.3 and
11.5�0.3 Å, respectively, while their corresponding depths
are −0.92 and −0.61 kBT.

III. SIMULATION MODEL OF RNA

The continuous versions of the EPPs described in the pre-
vious section are the basis for a simulation model of RNA
�the Padé fits are included in Ref. �12��. Our dressed polymer
model �DPM� consists of a freely jointed chain made out of
N rigid segments of distinct lengths a��. The ends of each
segment represent the positions of the centroids of two
nucleotides of species � and �, and the actual lengths a�� are
the average distances extracted from the experimental data.
The interactions between the second and third nearest neigh-
bors in the chain are mediated by the potentials �u��� and
�u���	�, respectively, and the remaining couples of bases
interact through �u���r�. The purpose of the three dressing
EPPs is to capture, at least qualitatively, some of the most
important mechanical and structural properties of RNA
chains that include stiffness, chirality, and long-range order.

In our basic simulation algorithm, the RNA chains are
grown in a progressive way. Starting with a single segment,
more segments are added one by one, in successive steps.
Each segment is represented by a vector, thus the chain �par-
tially formed or complete� is just the sum of these individual
vectors. A trial move consists of randomly rotating one or
more arbitrary segments and then reforming the chain. The
trial move is accepted with a probability given by �13�,

Pacc = min�1,exp�− ��ERT�� , �3�

with ��ERT=�ET−�ER is the change in potential energy
between the conformations R �reference� and T �test�. This
algorithm has the following features. It does not require any
further information and it allows to obtain the most stable

FIG. 5. �Color online� RNA hairpin structures 1esh �top� and
1jzc �bottom�. The experimental molecules �blue lines, right� and
simulated RNAs �cyan lines, center� are drawn together with the
secondary structures obtained with the program MFOLD �left�, as
explained in the text.

FIG. 6. �Color online� RNA hairpin molecules 1zif �top� and
1zih �bottom�. The experimental structures �blue lines, right� and
simulated RNAs �cyan lines, center� are plotted together with the
secondary structures determined with the program MFOLD �left�.

FIG. 4. �Color online� Distance-dependent EPPs �u���r� be-
tween the Watson-Crick base pairs GC �open circles� and AU �full
triangles�. To enhance clarity, �uGC�r� is plotted with an offset of
2 kBT. The continuous lines are Padé-like fits of the potentials GC
�upper blue line� and AU �lower cyan line�.
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chain configuration. In regard to the computing time, we
have not done any cutoff assumption and for that reason the
code makes on the order of N2 calculations of potential en-
ergy per MC step. In its present form, however, our code is
not optimized to perform an efficient exploration of the en-
ergy landscape that becomes increasingly complicated for
larger chains. We thus restricted our computations to solve
the structure of small molecules. Otherwise, both thermody-
namic and structural properties were obtained from an en-
semble of about 100 configurations of �109 MC steps each
one, requiring �22 hrs of single processor time per configu-
ration.

We carried out MC simulations of small RNA hairpins,
which are among the most common secondary structure mo-
tifs. Moreover, understanding the folding of small molecules
is a crucial step to describe the folding of larger RNAs. In
order to validate the results of our model, we compared them
with two distinct pairs of NMR structures that have the
following features. The sequences of each pair of molecules
are almost identical between them, except for a single
nucleotide. In the first case, the PDB code of the experimen-
tal structures is 1esh �5�GGUGCAUAGCACC3�� �14� and
1jzc �5�GGUGCAUGGCACC3�� �15�. Both structures
consist of a Watson-Crick base paired stem capped with a
loop of three unpaired nucleotides �5�AUA3� and 5�AUG3��.
On the other hand, we have also examined the
sequences 1zif �5�GGGCGAAAGCCU3�� and 1zih
�5�GGGCGCAAGCCU3�� �16�, which are two hairpins char-
acterized by the tetraloops �5�GAAA3�� and �5�GCAA3��, re-
spectively. It should be mentioned that tetraloops are of great
importance in the ribosome �17�. Our results are shown in
Figs. 5 and 6. As a reference, we plot �left in both figures�
the 2D secondary structures obtained with the program
MFOLD of Zuker and Turner �18�, which provides an estimate
of the main interactions. In Figs. 5 and 6 we present our
simulated molecules �center�, together with the experimental
RNAs �right�. As it can be observed, the simulated structures
are clearly similar to the experimental ones. The similitude is
not only qualitative but also quantitative.

In Tables I and II, we compare some characteristic dis-
tances of the simulated molecules with the corresponding
measurements done in the experimental RNAs. Such dis-
tances include the mean distance between the centers of mass

of the Watson-Crick base pairs d̄WC, the radius of gyration
Rg=	�
i=1

n �ri−rc�2� /n, the contour length Lc= �
i=2
n �ri

−ri−1�� /n, and the ratio Lc /Rg. Here, rc is the position of the
centroid of the RNA molecule with n=13 �Table I� and n
=12 �Table II�. First, it can be noticed that, within the error

bars, the simulated values of d̄WC are consistent with the
experimental data. On the other hand, both the radius of
gyration and the contour length are slightly overestimated in
the simulated molecules �due to the fixed lengths a���. In
both cases, however, the ratios Lc /Rg are basically identical
to the experimental ones.

IV. CONCLUSIONS

In conclusion, we have introduced a self-consistent model
of RNA folding, which reduces, by construction, the number
of accessible configurations in comparison with an all-atom
model. Such reduction is possible because the interaction
between the divers pairs of nucleotides is modeled with a
series of effective potential functions that are characterized
by a low number of potential minima. Of course, the folding
problem is still nontrivial. We have tested our DPM in the
case of numerical simulations of small RNA molecules. The
model can reproduce, with a certain degree of accuracy,
some structural features that are found in the experiments.
Otherwise, our coarse-graining model could be used to ac-
celerate the convergence of an all-atom model, provided that
there are algorithms capable to do the reconstruction of the
full atomic structure �19�.
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TABLE I. A comparison of the characteristic distances d̄WC

�mean distance between the centroids of the Watson-Crick base
pairs�, Rg �radius of gyration�, Lc �contour length�, and the ratio
Lc /Rg that were obtained from the experimental �1esh and 1jzc� and
simulated RNA molecules �s1esh and s1jzc�. The average energy

�Ē of the simulated hairpins is also included.

�Ē
d̄WC

�Å�
Rg

�Å�
Lc

�Å� Lc /Rg

1esh 11.0�0.9 8.1 56.7 7.0

s1esh −15.4 11.6�1.0 9.5 65.8 6.9

1jzc 10.5�1.2 8.7 61.2 7.0

s1jzc −16.2 11.6�0.5 9.1 64.8 7.1

TABLE II. A comparison of the same characteristic distances
that are studied in Table I for the experimental �1zif and 1zih� and

simulated structures �s1zif and s1zih�. The average energy �Ē of
the simulated RNA molecules is also presented.

�Ē
d̄WC

�Å�
Rg

�Å�
Lc

�Å� Lc /Rg

1zif 11.1�0.4 8.4 52.8 6.3

s1zif −14.5 11.4�0.2 8.8 59.7 6.8

1zih 11.2�0.2 7.7 50.6 6.6

s1zih −15.7 11.3�0.3 8.7 59.2 6.8
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